首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The optimized geometry and energetic properties of Fe(D2O)n 3+ clusters, with n = 4 and 6, have been studied with density-functional theory calculations and the BLYP functional, and the hydration of a single Fe 3+ ion in a periodic box with 32 water molecules at room temperature has been studied with Car-Parrinello molecular dynamics and the same functional. We have compared the results from the CPMD simulation with classical MD simulations, using a flexible SPC-based water model and the same number of water molecules, to evaluate the relative strengths and weaknesses of the two MD methods. The classical MD simulations and the CPMD simulations both give Fe-water distances in good agreement with experiment, but for the intramolecular vibrations, the classical MD yields considerably better absolute frequencies and ion-induced frequency shifts. On the other hand, the CPMD method performs considerably better than the classical MD in describing the intramolecular geometry of the water molecule in the first hydration shell and the average first shell...second shell hydrogen-bond distance. Differences between the two methods are also found with respect to the second-shell water orientations. The effect of the small box size (32 vs 512 water molecules) was evaluated by comparing results from classical simulations using different box sizes; non-negligible effects are found for the ion-water distance and the tilt angles of the water molecules in the second hydration shell and for the O-D stretching vibrational frequencies of the water molecules in the first hydration shell.  相似文献   

2.
3.
Results of ab initio molecular dynamics (AIMD), quantum mechanics/molecular mechanics (QM/MM), and classical molecular dynamics (CMD) simulations of Cm(3+) in liquid water at a temperature of 300 K are reported. The AIMD simulation was based on the Car-Parrinello MD scheme and GGA-PBE formulation of density functional theory. Two QM/MM simulations were performed by treating Cm(3+) and the water molecules in the first shell quantum mechanically using the PBE (QM/MM-PBE) and the hybrid PBE0 density functionals (QM/MM-PBE0). Two CMD simulations were carried out using ab initio derived pair plus three-body potentials (CMD-3B) and empirical Lennard-Jones pair potential (CMD-LJ). The AIMD and QM/MM-PBE simulations predict average first shell hydration numbers of 8, both of which disagree with recent experimental EXAFS and TRLFS value of 9. On the other hand, the average first shell hydration numbers obtained in the QM/MM-PBE0 and CMD simulations was 9, which agrees with experiment. All the simulations predicted an average first shell and second shell Cm-O bond distance of 2.49-2.53 ? and 4.67-4.75 ? respectively, both of which are in fair agreement with corresponding experimental values of 2.45-2.48 and 4.65 ?. The geometric arrangement of the 8-fold and 9-fold coordinated first shell structures corresponded to the square antiprism and tricapped trigonal prisms, respectively. The second shell hydration number for AIMD QM/MM-PBE, QM/MM-PBE0, CMD-3B, and CMD-LJ, were 15.8, 17.2, 17.7, 17.4, and 16.4 respectively, which indicates second hydration shell overcoordination compared to a recent EXAFS experimental value of 13. Save the EXAFS spectra CMD-LJ simulation, all the computed EXAFS spectra agree fairly well with experiment and a clear distinction could not be made between configurations with 8-fold and 9-fold coordinated first shells. The mechanisms responsible for the first shell associative and dissociative ligand exchange in the classical simulations have been analyzed. The first shell mean residence time was predicted to be on the nanosecond time scale. The computed diffusion constants of Cm(3+) and water are in good agreement with experimental data.  相似文献   

4.
The average OH stretching vibrational frequency for the water molecules in the first hydration shell around a Li(+) ion in a dilute aqueous solution was calculated by a hybrid molecular dynamics + quantum-mechanical ("MD + QM") approach. Using geometry configurations from a series of snapshots from an MD simulation, the anharmonic, uncoupled OH stretching frequencies were calculated for 100 first-shell OH oscillators at the B3LYP and HF/6-31G(d,p) levels of theory, explicitly including the first shell and the relevant second shell water molecules into charge-embedded supermolecular QM calculations. Infrared intensity-weighting of the density-of-states (DOS) distributions by means of the squared dipole moment derivatives (which vary by a factor of 20 over the OH stretching frequency band at the B3LYP level), changes the downshift from approximately -205 to -275 cm(-1) at the B3LYP level. Explicit inclusion of relevant third-shell water molecules in the supermolecular cluster leads to a further downshift by approximately -30 cm(-1). Our final estimated average downshift is approximately -305 cm(-1). The experimental value lies somewhere in the range between -290 and -420 cm(-1). Also, the absolute nu(OH) frequency is well reproduced in our calculations. "In-liquid" instantaneous correlation curves between nu(OH) and various typical H-bond strength parameters such as R(O...O), R(H...O), the intramolecular OH bond length, and the IR intensity are presented. Some of these correlations are robust and persist also for the rather distorted instantaneous geometries in the liquid; others are less so.  相似文献   

5.
6.
Classical molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) MD simulations have been performed to investigate the structural and dynamical properties of the Tl(III) ion in water. A six-coordinate hydration structure with a maximum probability of the Tl-O distance at 2.21 A was observed, which is in good agreement with X-ray data. The librational and vibrational spectra of water molecules in the first hydration shell are blue-shifted compared with those of pure liquid water, and the Tl-O stretching force constant was evaluated as 148 Nm(-1). Both structural and dynamical properties show a distortion of the first solvation shell structure. The second shell ligands' mean residence time was determined as 12.8 ps. The Tl(III) ion can be classified as "structure forming" ion; the calculated hydration energy of -986 +/- 9 kcal mol agrees well with the experimental value of -986 kcal mol.  相似文献   

7.
The structural and dynamical properties of high-spin Ru2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru2+ and the 6-31G basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru2+–O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.  相似文献   

8.
The structural and energetic features of a variety of gas-phase aluminum ion hydrates containing up to 18 water molecules have been studied computationally using density functional theory. Comparisons are made with experimental data from neutron diffraction studies of aluminum-containing crystal structures listed in the Cambridge Structural Database. Computational studies indicate that the hexahydrated structure Al[H(2)O](6)(3+) (with symmetry T(h)()), in which all six water molecules are located in the innermost coordination shell, is lower in energy than that of Al[H(2)O](5)(3+).[H(2)O], where only five water molecules are in the inner shell and one water molecule is in the second shell. The analogous complex with four water molecules in the inner shell and two in the outer shell undergoes spontaneous proton transfer during the optimization to give [Al[H(2)O](2)[OH](2)](+).[H(3)O(+)](2), which is lower in energy than Al[H(2)O](6)(3+); this finding of H(3)O(+) is consistent with the acidity of concentrated Al(3+) solutions. Since, however, Al[H(2)O](6)(3+) is detected in solutions of Al(3+), additional water molecules are presumed to stabilize the hexa-aquo Al(3+) cation. Three models of a trivalent aluminum ion complex surrounded by a total of 18 water molecules arranged in a first shell containing 6 water molecules and a second shell of 12 water molecules are discussed. We find that a model with S(6) symmetry for which the Al[H(2)O](6)(3+) unit remains essentially octahedral and participates in an integrated hydrogen bonded network with the 12 outer-shell water molecules is lowest in energy. Interactions between the 12 second-shell water molecules and the trivalent aluminum ion in Al[H(2)O](6)(3+) do not appear to be sufficiently strong to orient the dipole moments of these second-shell water molecules toward the Al(3+) ion.  相似文献   

9.
Structural and dynamical properties of the TiO(2+) ion in aqueous solution have been investigated by using the new ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism, which does not require any other potential functions except those for solvent-solvent interactions. Both first and second hydration shell have been treated at Hartree-Fock (HF) quantum mechanical level. A Ti-O bond distance of 1.5 A was observed for the [Ti=O](2+) ion. The first hydration shell of the ion shows a varying coordination number ranging from 5 to 7, five being the dominant one and representing one axial and four equatorial water molecules directly coordinated to Ti, which are located at 2.3 A and 2.1 A, respectively. The flexibility in the coordination number reflects the fast exchange processes, which occur only at the oxo atom, where water ligands are weakly bound through hydrogen bonds. Considering the first shell hydration, the composition of the TiO(2+) hydrate can be characterized as [(H(2)O)(0.7)(H(2)O)(4) (eq)(H(2)O)(ax)](2+). The second shell consists in average of 12 water molecules located at a mean distance of 4.4 A. Several other structural parameters such as radial and angular distribution functions and coordination number distributions were analyzed to fully characterize the hydration structure of the TiO(2+) ion in aqueous solution. For the dynamics of the TiO(2+) ion, different sets of dynamical parameters such as Ti=O, Ti-O(eq), and Ti-O(ax) stretching frequencies and ligands' mean residence times were evaluated. During the simulation time of 15 ps, 3 water exchange processes in the first shell were observed at the oxo atom, corresponding to a mean residence time of 3.6 ps. The ligands' mean residence time for the second shell was determined as 3.5 ps.  相似文献   

10.
A detailed investigation of the hydration structure of Zn2+, Ni2+, and Co2+ in water solutions has been carried out combining X-ray absorption fine structure (EXAFS) spectroscopy and Molecular Dynamics (MD) simulations. The first quantitative analysis of EXAFS from hydrogen atoms in 3d transition metal ions in aqueous solutions has been carried out and the ion-hydrogen interactions have been found to provide a detectable contribution to the EXAFS spectra. An accurate determination of the structural parameters associated with the first hydration shell has been performed and compared with previous experimental results. No evidence of significant contributions from the second hydration shell to the EXAFS signal has been found for these solutions, while the inclusion of the hydrogen signal has been found to be important in performing a quantitative analysis of the experimental data. The high-frequency contribution present in the EXAFS spectra has been found to be due to multiple scattering (MS) effects inside the ion-oxygen first coordination shell. MD has been used to generate three-body distribution functions from which a reliable analysis of the MS contributions to the EXAFS spectra of these systems has been carried out.  相似文献   

11.
Molecular dynamics simulations of CaCl2 solutions in water and methanol-water mixtures, with methanol concentrations of 5, 10, 50, and 90 mol %, at room temperature, have been performed. The methanol and water molecules have been modeled as flexible three-site bodies. Solvation of the calcium ions has been discussed on the basis of the radial and angular distribution functions, the orientation of the solvent molecules, and their geometrical arrangement in the coordination shells. Analysis of the H-bonds of the solvent molecules coordinated by Ca2+ has been done. Residence time of the solvent molecules in the coordination shell has been calculated. The preferential hydration of the calcium ions has been found over the whole range of the mixture composition. The water concentration in the first and second coordination shells of Ca2+ significantly exceeds the water content in the solution, despite the very similar interaction energy of the calcium ion with water and methanol. In aqueous solution and methanol-water mixtures, the first coordination shell of Ca2+ is irregular and long-living. The solvent molecules prefer the anti-dipole arrangement, but, in aqueous solutions and water-rich mixtures, the water molecules in the primary shell have only one H-bonded neighbor.  相似文献   

12.
13.
14.
Molecular dynamics simulations have been performed to investigate the structural and dynamical properties of the second hydration shell of Th4+ ion at various chloride concentrations and temperatures. When the concentration increases (ca. 5 M), the hydration of Th4+ ion involves the displacement of the water molecules by Cl ligand and slightly decreases the total coordination number. The residence time of water molecules in the second hydration shell decreases as a function of increasing solution temperature.  相似文献   

15.
Molecular dynamics simulations of the Hg2+ ion in aqueous solution have been carried out using an effective two-body potential derived from quantum mechanical calculations. A stable heptacoordinated structure of the Hg2+ first hydration shell has been observed and confirmed by extended X-ray absorption fine structure (EXAFS) experimental data. The structural properties of the Hg2+ hydration shells have been investigated using radial and angular distribution functions, while the dynamical behavior has been discussed in terms of reorientational correlation functions, mean residence times of water molecules in the first and second hydration shells, and self-diffusion coefficients. The effect of water-water interactions on the Hg2+ hydration properties has been evaluated using the SPC/E and TIP5P water models.  相似文献   

16.
A molecular dynamics (MD) simulation based on a combined ab initio quantum mechanics/molecular mechanics (QM/MM) method has been performed to investigate the solvation structure and dynamics of H3O+ in water. The QM region is a sphere around the central H3O+ ion, and contains about 6-8 water molecules. It is treated at the Hartree-Fock (HF) level, while the rest of the system is described by means of classical pair potentials. The Eigen complex (H9O4+) is found to be the most prevalent species in the aqueous solution, partly due to the selection scheme of the center of the QM region. The QM/MM results show that the Eigen complex frequently converts back and forth into the Zundel (H5O2+) structure. Besides the three nearest-neighbor water molecules directly hydrogen-bonded to H3O+, other neighbor waters, such as a fourth water molecule which interacts preferentially with the oxygen atom of the hydronium ion, are found occasionally near the ion. Analyses of the water exchange processes and the mean residence times of water molecules in the ion's hydration shell indicate that such next-nearest neighbor water molecules participate in the rearrangement of the hydrogen bond network during fluctuative formation of the Zundel ion and, thus, contribute to the Grotthuss transport of the proton.  相似文献   

17.
Ionic hydration and ion-pairing have been investigated by X-ray and Raman spectroscopy in concentrated aqueous Mn(NO3)2 solutions. The correlation function calculated from experimental diffraction data shows peaks at ≈ 2.2, 2.75, 3.1, 3.45, 3.9, 4.25 and 4.7 Å which can be attributed to cationic and anionic hydration phenomena and to cation-anion pairing. The two peaks at ≈ 2.75 and 4.25 Å show the existence of a second coordination shell of the Mn2+ ion directly H-bonded with water molecules. Complex formation between cation and anion is confirmed by using Raman spectroscopy.  相似文献   

18.
Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism has been applied in conjunction to experimental large angle X-ray scattering to study the structure and dynamics of the hydrated sulfite ion in aqueous solution. The results show that there is a considerable effect of the lone electron-pair on sulfur concerning structure and dynamics in comparison with the sulfate ion with higher oxidation number and symmetry of the hydration shell. The S-O bond distance in the hydrated sulfite ion has been determined to 1.53(1) ? by both methods. The hydrogen bonds between the three water molecules bound to each sulfite oxygen are only slightly stronger than those in bulk water. The sulfite ion can therefore be regarded as a weak structure maker. The water exchange rate is somewhat slower for the sulfite ion than for the sulfate ion, τ(0.5) = 3.2 and 2.6 ps, respectively. An even more striking observation in the angular radial distribution (ARD) functions is that the for sulfite ion the water exchange takes place in close vicinity of the lone electron-pair directed at its sides, while in principle no water exchange did take place of the water molecules hydrogen bound to sulfite oxygens during the simulation time. This is also confirmed when detailed pathway analysis is conducted. The simulation showed that the water molecules hydrogen bound to the sulfite oxygens can move inside the hydration shell to the area outside the lone electron-pair and there be exchanged. On the other hand, for the hydrated sulfate ion in aqueous solution one can clearly see from the ARD that the distribution of exchange events is symmetrical around the entire hydration sphere.  相似文献   

19.
Hydration of ytterbium (III) halide/hydroxide ions produced by electrospray ionization was studied in a quadrupole ion trap mass spectrometer and by density functional theory (DFT). Gas-phase YbX2 + and YbX(OH)+ (X?=?OH, Cl, Br, or I) were found to coordinate from one to four water molecules, depending on the ion residence time in the trap. From the time dependence of the hydration steps, relative reaction rates were obtained. It was determined that the second hydration was faster than both the first and third hydrations, and the fourth hydration was the slowest; this ordering reflects a combination of insufficient degrees of freedom for cooling the hot monohydrate ion and decreasing binding energies with increasing hydration number. Hydration energetics and hydrate structures were computed using two approaches of DFT. The relativistic scalar ZORA approach was used with the PBE functional and all-electron TZ2P basis sets; the B3LYP functional was used with the Stuttgart relativistic small-core ANO/ECP basis sets. The parallel experimental and computational results illuminate fundamental aspects of hydration of f-element ion complexes. The experimental observations??kinetics and extent of hydration??are discussed in relationship to the computed structures and energetics of the hydrates. The absence of pentahydrates is in accord with the DFT results, which indicate that the lowest energy structures have the fifth water molecule in the second shell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号