首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
谢妍妍  柴云  张普玉 《化学通报》2020,83(12):1104-1112
纤维素是一种可生物降解的天然高分子材料,由于纤维素含有大量的分子间和分子内氢键,导致纤维素难溶于水和一般的有机溶剂。现有的溶剂存在稳定性差,具有毒性,难以回收等缺点,对纤维素的加工、利用造成困难,因此,寻找新型绿色溶剂成为纤维素开发的热点和难点。离子液体是一种新型高效绿色溶剂,在一定条件下可以溶解纤维素、角蛋白等生物大分子,离子液体的出现为纤维素的溶解提供了一种环境友好、可生物降解的溶剂体系,具有广阔的应用前景。本文就不同种类离子液体溶解纤维素的溶解度以及影响溶解度几种因素进行了综述,总结了离子液体与纤维素作用机理以及离子液体的回收方法,为纤维素的加工利用提供了理论依据和工业指导。  相似文献   

2.
Ionic liquids are low melting salts which represent a new class of non-molecular, ionic solvents. By combining different cations and anions a large number of liquids with very different physical and chemical properties can be obtained. It is possible to optimize the ionic medium for a specific application by the careful choice of the ion combination. Ionic liquids are interesting substitutes for organic solvent in catalytic reactions for many reasons: Besides their non-volatile nature offering significant engineering advantages, the unusual solubility properties of these liquids enable new multiphasic catalytic reactions.  相似文献   

3.
Ionic liquids are a new class of organic solvents with high polarity and a preorganized solvent structure. Very polar reactions can be carried out in these liquid in the absence of or with a controlled amount of water, and crystalline nanoparticles can be synthesized conveniently at ambient temperatures. The pronounced self-organization of the solvent is used in the synthesis of self-assembled, highly organized hybrid nanostructures with unparalleled quality. The extraordinary potential of ionic liquids in materials synthesis is described in this minireview and a physicochemical explanation is given.  相似文献   

4.
离子液体是一种有机盐,在接近室温下呈液状.离子液体是难挥发、极性高的溶剂,它能溶解很多种有机、无机和金属有机化合物.虽然有越来越多的人报道了有关离子液体在有机合成中的应用,但是在聚合过程中的应用却很少.然而在近几年,科学家证明了离子液体在聚合物的合成中的作用很大.在以离子液体为介质的自由基聚合反应中,kp/kt 会增大.尤其是在原子转移自由基聚合中,以离子液体作为溶剂有助于聚合物与残余催化剂的分离.本文主要阐述了原子转移自由基聚合反应的基本原理、特点以及离子液体在原子转移自由基聚合中的应用,并且还介绍了其他研究者的工作和原子转移自由基聚合的发展前景.  相似文献   

5.
Ionic liquids are organic salts that are liquid at ambient temperatures, preferably at room temperature. They are nonvolatile, thermally and chemically stable, highly polar liquids that dissolve many organic, inorganic, and metallo‐organic compounds. Many combinations of organic cations with different counterions are already known, and the properties of ionic liquids may be adjusted by the proper selection of the cation and counterion. In the last decade, there has been increasing interest in using ionic liquids as solvents for chemical reactions. The interest is stimulated not only by their nonvolatility (green solvents) but also by their special properties, which often affect the course of a reaction. In recent years, ionic liquids have also attracted the attention of polymer chemists. Although the research on using ionic liquids in polymer systems is still in its infancy, several interesting possibilities have already emerged. Ionic liquids are used as solvents for polymerization processes, and in several systems they indeed show some advantages. In radical polymerization, the kp/kt ratio (where kp is the rate constant of propagation and kt is the rate constant of termination) is higher than in organic media, and thus better control of the process can be achieved. Ionic liquids, as electrolytes, have also attracted the attention of researchers in the fields of electrochemical polymerization and the synthesis of conducting polymers. Finally, the blending of ionic liquids with polymers may lead to the development of new materials (ionic liquids may act as plasticizers, electrolytes dispersed in polymer matrices, or even porogens). In this article, the new developments in these fields are briefly discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4675–4683, 2005  相似文献   

6.
Ionic liquids are a type of salts that are liquid at low temperature (<100℃). Because of their some special properties, they have been widely used as new “green solvents” for many chemical reactions and liquid-liquid extraction in the past several years. In this paper, a new method for the separation of nucleotides is developed and the essential feature of the method is that 1-alkyl-3-methylimidazolium salts are used as mobile phase additives, resulting in a baseline separation of nucleotides without need of gradient elution and need of organic solvent addition as currently used in RP-HPLC. This study shows the potential application of ionic liquids as mobile phase additives in reversed-phase liquid chromatograohy.  相似文献   

7.
离子液体在纤维素研究中的应用*   总被引:1,自引:0,他引:1  
叶君  赵星飞  熊犍 《化学进展》2007,19(4):478-484
离子液体是一种新型的绿色溶剂,纤维素是一种可再生的生物资源,作为非衍生化纤维素溶剂,离子液体在纤维素研究中呈现出了良好的发展态势。本文综述了纤维素在离子液体溶解、再生、衍生化反应及其在生物酶催化等方面的一些研究成果。  相似文献   

8.
王艺聪  刘磊磊 《色谱》2021,39(3):241-259
离子液体是由阴、阳离子组成的低温熔融盐,几乎没有蒸汽压,具有稳定性好、溶解能力强、结构可设计、导电性好等优良性能。离子液体作为一种广受关注的新型“绿色溶剂”,具有代替传统有机溶剂的潜力,其制备方法和应用范围研究日趋完善和多样,已广泛应用于催化化学、光电化学、材料化学和分析化学等领域。离子液体通过功能化导向设计后,可以将羟基、氨基、羧基、氰基等活性基团键合在离子液体结构上,促使其更加易于与目标分子通过生成π-π键、氢键、离子键和范德华力等而产生相互作用,更加易于发生固定化反应。将离子液体负载到固体载体材料进行固定化后,新型材料既可以减少离子液体的流失,同时保留了离子液体和固体载体的独特性能,具有富集效率高、吸附容量高、稳定性好、识别位点多、萃取选择性强、离子液体利用率高等特点,近年来,在有机小分子固相萃取分离研究中应用广泛。该文从离子液体与硅胶、分子筛、分子印迹聚合物、氧化石墨烯、磁性材料等固体载体的固定化研究情况入手,综述了离子液体固定化材料在固相萃取分离中的应用情况,涉及的目标分离物质包括生物碱类、黄酮类、多酚类等天然活性成分,以及常见药物分子、有机农药等有机小分子化合物,系统地介绍了离子液体与多种载体固定化的性质、应用和分离机制。离子液体的引入,增加了复合材料的活性位点分布和吸附容量,离子液体固定化材料的吸附效率与离子液体种类、吸附材料用量、样品溶液浓度、吸附温度、pH值、洗脱溶剂类型、用量及流速等因素有关。该文探讨了离子液体结构相对单一、相关基础理论研究相对薄弱、复杂基质萃取程度不理想等问题,并提出相应的解决思路,以期为离子液体固定化材料在复杂基质中目标分子分离分析方面的应用提供借鉴和参考。  相似文献   

9.
Ionic liquids, especially imidazonium salts, have recently gained recognition as possible environmentally benign alternative chemical process solvents. This is mainly due to their nonvolatile nature, insolubility in some solvents as well as their ability to dissolve a wide range of organic and inorganic materials, allowing the ionic liquids easy recovery and recycling. Examples of their application in organic reactions have been summarized in a number of recent review articles. 1 Aryl allyl et…  相似文献   

10.
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid–liquid and gas–liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid–liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents.  相似文献   

11.
离子液体参与构筑的微乳液:离子液微乳液   总被引:1,自引:0,他引:1  
微乳液一般是指两种互不相溶的液体(极性相:一般为水;非极性相:一般为有机溶剂),在表面活性剂作用下形成的均一透明的热力学稳定体系,已广泛应用于材料制备、化学合成等领域.离子液体是熔点低于100℃,完全由离子组成的一类物质,作为一种"绿色溶剂",具有诸多优异的物理化学性质,又被称为"可设计型溶剂".本文综述了离子液体作为极性相、非极性相,甚至表面活性剂,构筑的一类微乳液――离子液微乳液,重点介绍了其物理化学性质的研究进展,并展望了发展趋势.  相似文献   

12.
Ionic liquids have many unique properties as a new and remarkable class of environmental benign solvents,which promises widespread applications in industry and other areas. However,the ionic liq-uids with surface activity are rarely reported. In this work,a series of novel ionic liquids was synthe-sized by using N-methyl-2-pyrrolidone and alkyl bromide. The physical properties of this family of ionic liquids have been characterized,which shows that these compounds have ionic liquids characteristics,surface activity and biocompatibility.  相似文献   

13.
JPC – Journal of Planar Chromatography – Modern TLC - Room temperature ionic liquids are a new class of solvents of potential interest for liquid chromatography. Ionic liquids possess a...  相似文献   

14.
Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100 °C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance.  相似文献   

15.
Zhang C  Malhotra SV 《Talanta》2005,67(3):560-563
This is the first study using ionic liquids (ILs) as additive in the aqueous solvent medium for detection of paraoxon by acetylcholinesterase inhibition method. A systematic comparison of various ILs with organic solvents has been made. The aqueous buffer solution containing ionic liquid ethylpyridinium hexafluorophosphate [EtPy]+[PF6] has been found to give the best results. The inhibition kinetic follows the first order model. Ionic liquids modified aqueous solutions show the potential to provide a promising and effective medium in detection of paraoxon with acetylcholinesterase.  相似文献   

16.
Navjeet Kaur 《合成通讯》2019,49(13):1679-1707
The investigation for replacement of organic solvents in chemical synthesis is a growing area of interest due to increasing environmental issues. The use of ionic liquid salts as solvents and catalysts in organic reactions has gained extensive interest. Ionic liquids provided a new environmentally benign and improved alternative to traditional methods in modern synthetic chemistry. The aim of present review is to focus on the applications of ionic liquids for the synthesis of fused six-membered oxygen heterocycles.  相似文献   

17.
Navjeet Kaur 《合成通讯》2018,48(13):1588-1613
The investigation for replacement of organic solvents in organic synthesis is a growing area of interest due to increasing environmental issues. The use of ionic liquid salts as solvents and catalysts in organic reactions has gained extensive interest. Ionic liquids provided a new environmentally benign and improved alternative to traditional methods in modern synthetic chemistry. The aim of present review is to focus on the applications of ionic liquids for the synthesis of O-heterocycles.  相似文献   

18.
离子液体中的不对称合成研究进展   总被引:7,自引:0,他引:7  
离子液体作为溶剂已广泛应用于许多有机化学反应.总结了离子液体中的不对称有机反应,如氢化反应、酰基化反应、环氧化反应、酶催化反应等.  相似文献   

19.
离子液体的制备及其在酶催化反应中的应用   总被引:3,自引:0,他引:3  
夏咏梅  吴红平  张玥  方云  孙诗雨  石玉刚 《化学进展》2006,18(12):1660-1667
离子液体,尤其是非水溶性离子液体可以作为一种溶剂或酶的载体用于非水相酶促反应中,也可以用于双相体系中的酶促反应。本文概括性介绍了常见离子液体的制备,总结和讨论了离子液体中酶的活性、稳定性、反应选择性以及各类酶在离子液体中的催化反应行为。离子液体的物性及其与酶的相容性对酶本身及酶促反应都有很大的影响。在非水相酶促反应中,离子液体的极性作用不遵从通常用来判别大多数有机物溶剂行为的规则,比如lgP规则。  相似文献   

20.
Polar organic solvents such as methanol or N-methylformamide inactivate lipases. Although ionic liquids such as 3-alkyl-1-methylimidazolium tetrafluoroborates have polarities similar to these polar organic solvents, they do not inactivate lipases. To get reliable lipase-catalyzed reactions in ionic liquids, we modified their preparation by adding a wash with aqueous sodium carbonate. Lipase-catalyzed reactions that previously did not occur in untreated ionic liquids now occur at rates comparable to those in nonpolar organic solvents such as toluene. Acetylation of 1-phenylethanol catalyzed by lipase from Pseudomonas cepacia (PCL) was as fast and as enantioselective in ionic liquids as in toluene. Ionic liquids permit reactions in a more polar solvent than previously possible. Acetylation of glucose catalyzed by lipase B from Candida antarctica (CAL-B) was more regioselective in ionic liquids because glucose is up to one hundred times more soluble in ionic liquids. Acetylation of insoluble glucose in organic solvents yielded the more soluble 6-O-acetyl glucose, which underwent further acetylation to give 3,6-O-diacetyl glucose (2-3:1 mixture). However, acetylation of glucose in ionic liquids yielded only 6-O-acetyl glucose (>13:1 and up to >50:1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号