首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Pretreatment is the crucial step to disrupt the recalcitrant structure of lignocellulosic biomass for improving the enzymatic hydrolysis efficiency. Typically, hydrothermal, organosolv and hydrotropic pretreatments are environmentally benign and effective methods. In this work, effects of hydrothermal, organosolv and hydrotropic pretreatments on improving enzymatic hydrolysis of bamboo were comprehensively compared. Hydrotropic pretreatment was more effective in removal lignin and xylose from bamboo fiber cell wall. However, the surface coverage by lignin and extractives were dramatically displaced during organosolv pretreatment as investigation by X-ray photoelectron spectroscopy. After pretreatments, the crystallinity of cellulose in pretreated substrates has a significant reduction, and pores were exposed on fiber surface. The residual content of acetyl and phenolic groups in hydrotropic pretreated substrates is lower than organosolv pretreated substrates. In order to deeply assess the delignification of pretreatments, the isolated lignins obtaining from pretreatments process were characterized by Fourier transform infrared spectroscopy also. It was revealed that hydrotropic lignin contained more phenolic hydroxyl group and syringyl units than organosolv lignin. Compared to hydrothermal and organosolv pretreatment, cellulase adsorption capacity of pretreated substrates was notably improved by hydrotropic pretreatment, which indicating the better enzyme accessibility of cellulose. Eventually, the maximum glucose yield was obtained from hydrotropic pretreated substrates.  相似文献   

2.
Softwood residues are the most abundant feedstock available for bioconversion in many northern countries. However, the high costs for delignification and enzymatic hydrolysis currently deter commercialization of softwood bioconversion processes. This study evaluates the abilities of two novel fungal preparations (MSUBC1 and MSUBC2) and two commercial cellulase preparations (TR1 and TR2) to hydrolyze cellulose in Douglas-fir pretreated by steam explosion or ethanol organosolv process. MSUBC1 showed significantly better performance than the other preparations on both lignocellulosic substrates. In particular, MSUBC1 achieved >76% cellulose conversion for hydrolysis of steam-exploded Douglas-fir (~44% lignin) after 72 h at low enzyme loading (10 filter paper units/g of cellulose) and without β-glucosidase supplementation.  相似文献   

3.
Liquid hot water (LHW) pretreatment is an efficient chemical-free strategy for enhancing enzymatic digestibility of lignocellulosic biomass for conversion to fuels and chemicals in biorefinery. In this study, effects of LHW on removals of hemicelluloses and lignin from corncobs were studied under varying reaction conditions. LHW pretreatment at 160 °C for 10 min promoted the highest levels of hemicellulose solubilization into the liquid phase, resulting into the maximized pentose yield of 58.8% in the liquid and more than 60% removal of lignin from the solid, with 73.1% glucose recovery from enzymatic hydrolysis of the pretreated biomass using 10 FPU/g Celluclast?. This led to the maximal glucose and pentose recoveries of 81.9 and 71.2%, respectively, when combining sugars from the liquid phase from LHW and hydrolysis of the solid. Scanning electron microscopy revealed disruption of the intact biomass structure allowing increasing enzyme’s accessibility to the cellulose microfibers which showed higher crystallinity index compared to the native biomass as shown by x-ray diffraction with a marked increase in surface area as revealed by BET measurement. The work provides an insight into effects of LHW on modification of physicochemical properties of corncobs and an efficient approach for its processing in biorefinery industry.  相似文献   

4.
Choline chloride (ChCl) / glycolic acid (GA) deep eutectic solvent (DES) media with high water content but without any additional catalyst are introduced in furfural and 5-hydroxymethylfurfural (HMF) production. The effects of water content, reaction time, and reaction temperature are investigated with two feedstocks: a glucose/xylose mixture and birch sawdust. Based on the results, 10 equivalent quantities of water (32.9 wt.%) were revealed to be beneficial for conversions without rupturing the DES structure. The optimal reaction conditions were 160 °C and 10 minutes for the sugar mixture and 170 °C and 10 minutes for birch sawdust in a microwave reactor. High furfural yields were achieved, namely 62 % from the sugar mixture and 37.5 % from birch sawdust. HMF yields were low, but since the characterization of the solid residue of sawdust, after DES treatment, was revealed to contain only cellulose (49 %) and lignin (52 %), the treatment could be potentially utilized in a biorefinery concept where the main products are obtained from the cellulose fraction. Extraction of products into the organic phase (methyl isobutyl ketone, MIBK) during the reaction enabled the recycling of the DES phase, and yields remained high for three runs of recycling.  相似文献   

5.
Biomass wastes(almond shell and olive tree pruning) were used in this work as raw materials for the extraction of high purity lignin by different delignification methods. A pretreatment stage was carried out to remove the major hemicelluloses content in the solid feedstocks. Afterward, two sulfur-free pulping processes(soda and organosolv) were applied to extract the largest fraction of lignin. The extracted lignin contained in the liquors was isolated using selective precipitation methods to design a tailor-made technique for obtaining high-purity lignin(in all cases more 90% of purity was reached). Soda process allowed the extraction of more lignin(around 40%–47%) than organosolv process(lower than 20%) regardless of the lignocellulosic source employed.Once the different lignin samples were isolated and characterized, they were depolymerized for the obtaining of small phenolic compounds. Three main streams were produced after the reaction: phenolic enriched oil, residual lignin and coke. After the purification of these fractions, their quantifications and characterization were conducted.The most abundant product of the reaction was residual lignin generated by the undesirable repolymerization of the initial lignin with yields around 30%–45%. The yield of the stream enriched in phenolic oil was higher than 20%. Coke, the lowest added-value product, presented a yield lower than 12% in all the cases. Lignin from organosolv presented higher phenolic oil yields, mainly due to their lower molecular size. This parameter was, thus, considered a key factor to obtain higher yields.  相似文献   

6.
Softwoods are generally considered to be one of the most difficult lignocellulosic feedstocks to hydrolyze to sugars for fermentation, primarily owing to the nature and amount of lignin. If the inhibitory effect of lignin can be significantly reduced, softwoods may become a more useful feedstock for the bioconversion processes. Moreover, strategies developed to reduce problems with softwood lignin may also provide a means to enhance the processing of other lignocellulosic substrates. The Forest Products Biotechnology Group at the University of British Columbia has been developing softwood-to-ethanol processes with SO2-catalyzed steam explosion and ethanol organosolv pretreatments. Lignin from the steam explosion process has relatively low reactivity and, consequently, low product value, compared with the highvalue coproduct that can be obtained through organosolv. The technical and economic challenges of both processes are presented, together with suggestions for future process development.  相似文献   

7.
The residual cellulose of wood processing waste, sawdust, which was leftover after sequential hot-water extraction processes to isolate hemicelluloses and lignin in a novel forest biorefinery concept, was explored as the starting material for preparation of a highly value-added polymeric material, nanofibrillated cellulose (NFC) also widely termed as cellulose nanofiber, which has provided an alternative efficient way to upgrade sawdust waste. The residual cellulose in sawdust was converted to a transparent NFC suspension in water through the 2,2,6,6-tetramethylpiperidine-1-oxyl radical/NaClO/NaBr oxidization approach. The resultant NFC with a dimension of ca. 5 nm in width and hundreds of nanometers in length were further processed into NFC films. The morphological features of the NFC suspension and its films were assessed by transmission electron microscopy and scanning electron microscopy. Highly even dispersion of NFC fibrils in the films originated from sawdust feasibly contributes to the outstanding mechanical performance of the films. NFC suspension with higher carboxylate content and its resultant NFC films were found to show higher transmission of light.  相似文献   

8.
In recent years, growing attention has been focused on the use of lignocellulosic biomass as a feedstock for the production of ethanol, a possible renewable alternative to fossil fuels. Several pretreatment processes have been developed for decreasing the biomass recalcitrance, but only a few of them seem to be promising. In this study, effect of various organic solvents and organic acids on the pretreatment of sugarcane bagasse was studied. Among the different organic acids and organic solvents tested, formic acid was found to be effective. Optimization of process parameters for formic acid pretreatment was carried out. The structural changes before and after pretreatment was investigated by scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The X-ray diffraction profile showed that the degree of crystallinity was more for pretreated biomass than that of untreated. The FTIR spectra shown at the stretching of hydrogen bonds of pretreated sugarcane bagasse arose at higher number. It also revealed that the cellulose content in the solid residue increased because the hemicelluloses fraction in raw materials was released by acid hydrolytic reaction.  相似文献   

9.
The biological pretreatment of lignocellulosic biomass with white-rot fungi for the production of bioethanol is an alternative to the most used physico-chemical processes. After biological treatment, a solid composed of cellulose, hemicellulose, and lignin—this latter is with a composition lower than that found in the initial substrate—is obtained. On the contrary, after applying physico-chemical methods, most of the hemicellulose fraction is solubilized, while cellulose and lignin fractions remain in the solid. The optimization of the combination of cellulases and hemicellulases required to saccharify wheat straw pretreated with the white-rot fungus Irpex lacteus was carried out in this work. The application of the optimal dosage made possible the increase of the sugar yield from 33 to 54 %, and at the same time the reduction of the quantity of enzymatic mixture in 40 %, with respect to the initial dosage. The application of a pre-hydrolysis step with xylanases was also studied.  相似文献   

10.
Pretreatment of Douglas-fir by steam explosion produces a substrate containing approx 43% lignin. Two strategies were investigated for reducing the effect of this residual lignin on enzymatic hydrolysis of cellulose: mild alkali extraction and protein addition. Extraction with cold 1% NaOH reduced the lignin content by only approx 7%, but cellulose to glucose conversion was enhanced by about 30%. Before alkali extraction, addition of exogenous protein resulted in a significant improvement in cellulose hydrolysis, but this protein effect was substantially diminished after alkali treatment. Lignin appears to reduce cellulose hydrolysis by two distinct mechanisms: by forming a physical barrier that prevents enzyme access and by non-productively binding cellulolytic enzymes. Cold alkali appears to selectively remove a fraction of lignin from steam-exploded Douglas-fir with high affinity for protein. Corresponding data for mixed softwood pretreated by organosolv extraction indicates that the relative importance of the two mechanisms by which residual lignin affects hydrolysis is different according to the pre- and post-treatment method used.  相似文献   

11.
The thermal-decomposition characteristics and kinetics of Spartina alterniflora (smooth cordgrass; SC) pretreated with thermo-lime and hot water were investigated by thermogravimetric analysis. Results showed that pretreatment changed the thermal-decomposition behavior of pretreated biomass, as shown in the change of the volatile-matter yield, the thermal-decomposition temperature for a given conversion and the mass-loss rate, because of the breakage of lignocellulosic structure. The activation energy of SC ranged from 40.8 to 55.8 kJ mol?1 for conversion ratios between 0.15 and 0.8. Pretreatment increased the activation energy of thermal-decomposition reaction, indicating the increment of the thermal stability of biomass. Compared with thermo-lime pretreatment, hot-water pretreatment increased the volatile-matter yield, activation energy, and mass-loss rate of the sample. Structure changes were further investigated by X-ray and Fourier-transform infrared (FTIR) spectroscopy analysis to determine the effect of pretreatment on thermal decomposition. FTIR analyses revealed the depolymerization of lignocellulosic structure and the disruption of carboxyl carbons attached to the lignin side chain. X-ray and FTIR results also showed that thermo-lime and hot-water pretreatment broke the crystalline structure of cellulose by disrupting hydrogen bonding and removing amorphous matter. Compared with hot water, thermo-lime pretreatment resulted in many modifications of lignocellulosic structure and composition. Furthermore, structure breakage and composition removal changed thermal-decomposition characteristics of pretreated samples.  相似文献   

12.
Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.  相似文献   

13.
In general, lignocellulosic biomass contains three major components, namely lignin, hemicellulose and cellulose which are the polymers of C5 and C6 sugars. Thus, there is potential to utilize of this biomass for bioethanol production. The hydrolysis of cellulose into glucose was difficult due to the more fibrous nature and thus inhibit enzyme penetration into the cellulose. In order to solve this problem, hydrothermal pretreatment can be used for breaking the bonds within the lignin structure and increase the accessibility of enzyme into the cellulose. In this study, the effect of chemical addition, sodium hydroxide (NaOH) and calcium oxide (CaO) in hydrothermal pretreatment at 180 °C and 30 minutes reaction time of palm oil empty fruit bunches (EFB) on the enzymatic hydrolysis efficiencies was investigated. The enzymatic hydrolysis of hydrothermally pretreated EFB give the highest concentration of glucose at 0.67 g/L while the hydrothermally pretreated of EFB in the presence of NaOH gives the lowest glucose concentration 0.45 g/L.  相似文献   

14.
Formic acid pretreatment onPinus radiata D. Don was studied in order to improve the cellulose hydrolysis by commercial cellulase. The formic acid treatment effectively removed the lignin. A low substitution (formylation) and a crystallinity decrease of the cellulose in the pulp were observed. As consequence of these parameter changes, owing to the formic acid pretreatment on sawdust, a higher saccharification value was observed. The degree of saccharification increased when the degree of substitution (measured by titration) decreased and the portion of amorphous cellulose (measured via an X-ray technique) increased.Trichoderma reesei cellulase hydrolyzed the untreated and pretreated Pinus sawdust with formic acid in 25% and 56% of saccharification, respectively.  相似文献   

15.
Switchgrass was used as a model feedstock to determine the influence of pretreatment conditions and biomass quality on enzymatic hydrolysis using different enzyme products. Dilute sulfuric acid and soaking in aqueous ammonia pretreatments were used to produce biomass with varied levels of hemicellulose and lignin sheathing. Pretreated switchgrass solids were tested with simple enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) with three commercial enzyme products: Accellerase 1000 (Genencor), Spezyme CP (Genencor)/Novozyme 188 (Novozymes), and Celluclast/Novozyme 188 (Novozymes). Enzymes were loaded on a common activity basis (FPU/g cellulose and CBU/g cellulose). Despite identical enzyme loadings, glucose yields were significantly different for both acid and alkaline pretreatments but differences diminished as hydrolysis progressed for acid-pretreated biomass. Cellobiose concentrations in Accellerase treatments indicated an initial β-glucosidase limitation that became less significant over time. SSF experiments showed that differences in glucose and ethanol yields could not be attributed to enzyme product inhibition. Yield discrepancies of glucose or ethanol in acid pretreatment, alkaline pretreatment, and acid pretreatment/SSF were as much as 15%, 19%, and 5%. These results indicate that standardized protocols for measuring enzyme activity may not be adequate for assessing activity using pretreated biomass substrates.  相似文献   

16.
An integrated process for obtaining liquid biofuels is reported. The process is based on the separation of a lignocellulosic feedstock into cellulose and low-molecular-weight lignin (LMWL) followed by their conversion into two types of liquid biofuels, namely, hydrocarbon mixtures and bioalcohols. Different methods of wood fractionation into cellulose and LMWL—mechanical, steam explosion, and selective oxidation methods and their combinations—are compared. The amount of cellulose derived from wood and the amount of hydrolysate obtained from this cellulose for ethanol biosynthesis are determined by the efficiency of the method used for the fractionation of the lignocellulosic material. The best results are achieved by combining mechanical activation and subsequent catalytic oxidation of wood. Use of the resulting high-quality glucose solution, which are free of pentoses—sugars inhibiting ethanol biosynthesis—allows the alcohol yield to be increased by 30–35%. Liquid hydrocarbon mixtures enriched with phenols and products of their alkylation with ethanol have been obtained by thermal processing of LMWL in ethanol at an elevated pressure.  相似文献   

17.
The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60–70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.  相似文献   

18.
5-Hydroxymethylfurfural (HMF) and furfural (FF), two bio-based platform chemicals, were produced from various raw lignocellulosic materials (corncob, corn stover, wheat straw, rice straw and sugarcane bagasse) in a water-tetrahydrofuran media by using NaHSO4 as catalyst. The in fluences of reaction temperature (160-200 oC), reaction time (30-120 min), solvent volume ratio, feedstock concentration (2.4wt%-11.1wt%) and catalyst dosage were studied. The highest HMF and FF yields obtained from corncob were 47mol% and 56mol% under condition of 190 oC, 90 min, 10/1 of THF/H2O. Besides, the lignin in the raw biomass wasalso depolymerized into organosolv lignin.  相似文献   

19.
The chemical structures of Miscanthus var. ‘Soranovskii’ lignin fractions released via extraction of lignin from the lignocellulosic feedstock using moderately heated acetone under atmospheric pressure, without acidic and alkaline catalysts, were studied. A blend of Miscanthus stems and leaves was pretreated with water under thermobaric conditions. The acetone organosolv process subsequently afforded a substance related to a lignin-like matter-acetone organosolv Miscanthus lignin (AOML). Non-destructive analytical techniques such as FTIR spectroscopy, gas chromatography-mass spectrometry, size-exclusion chromatography, and 2D NMR were used. The IR and NMR spectroscopies revealed the AOML structure to comprise all the three major types of phenylpropane units: guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H). The resultant acetone-organosolv lignin exhibits good solubility in polar solvents, moderate solubility in aromatic chemicals, and is insoluble in non-polar solvents, exhibiting the physicochemical properties of a thermoplastic polymer with a softening point of 67.0°C (onset 33.0°C, endset 81.5°C).  相似文献   

20.
Morphological changes to the different components of lignocellulosic biomass were observed as they occurred during steam pretreatment by placing a pressure reaction cell in a neutron beam and collecting time-resolved neutron scattering data. Changes to cellulose morphology occurred mainly in the heating phase, whereas changes in lignin morphology occurred mainly in the holding and cooling phases. During the heating stage, water is irreversibly expelled from cellulose microfibrils as the elementary fibrils coalesce. During the holding phase lignin aggregates begin to appear and they increase in size most noticeably during the cooling phase. This experiment demonstrates the unique information that in situ small angle neutron scattering studies of pretreatment can provide. This approach could be useful in optimizing the heating, holding and cooling stages of pretreatments to allow the exact size and nature of lignin aggregates to be controlled in order to enhance enzyme accessibility to cellulose and therefore the efficiency of biomass conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号