首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
王小华  朱文芳 《力学学报》2010,42(3):389-399
在对网格密度作用进行详细分析的基础上,采用二阶全展开 Euler-Taylor-Galerkin分裂步有限元方法,对封闭水平矩形腔体内流体 (Pr=0.71)自然对流的第一次分岔过程进行了数值预报. 计算结果表明,第一次分岔相应的流动拓扑及临界Rayleigh ($Ra$)数随矩形腔体长宽比(W/B)取值的不同时会发生较大变化. 在所计算的长宽比取值范围内,封闭矩形腔内,流体自然对流第一次分岔拓扑的变化对应两种大的类型: 在较小的长宽比取值范围内(W/B\le 2.5),临界Ra数两侧,流动从单一涡核的定常流动突变成为具有不对称结构的定常双涡核运动, 在此范围内临界Ra数的取值随W/B取值的增加而减小;当对应长宽比取值2.6 \le W/B \le 4.0时,第一次分岔拓扑结构的变化呈现出更加复杂的特性,临界Ra数两侧流动从定常双涡核突变为定常非对称的三涡核流动,相应的临界Ra 数也随W/B的增加而减少. 而在区间[2.5,2.6]两端,临界Ra数的取值发生一次阶跃式突增,将该长宽比取值的区间定义为长方腔内该流体第一次分岔的突变区间.   相似文献   

2.
采用二阶全展开Euler-Taylor-Galerkin分裂步有限元方法,在指定的网格密度条件下,在流动对应的普朗特数取为0.71,雷诺数取为104的情况下,数值分析了热肋、冷肋、上绝热肋、下绝热肋等四种不同属性肋片对封闭方腔内典型自然对流流动的影响.计算结果表明,肋片的存在对封闭方腔内的自然对流及相应的传热效率具有较强的影响,对流流动结构以及平均Nusselt数随肋片的属性发生较大的改变.  相似文献   

3.
王小华 《计算力学学报》2012,29(2):249-254,261
本文采用二阶全展开ETG(Euler-Taylor-Galerkin)分裂步有限元方法,对长宽比为3.5(L/B=3.5,如图 1所示)的封闭矩形腔体内,三种Pr数条件下,定常层流范围内,流体自然对流叉形分岔随Rayleigh数的演化过程进行了数值模拟。研究结果表明,该矩形腔内对应三种Pr数条件下,流体的叉形分岔的演化过程中,在第二次模态Ⅱ型叉形分岔之后,均会出现两个较小尺度涡旋合并,突变为一个较大尺度涡旋的全新叉形分岔模态。即在某临界Ra数两侧,存在定常四涡结构和定常三涡结构两个定常解支,当系统控制参数Ra越过临界值,前者被后者突发性取代,这是完全不同于传统叉形分岔的逆叉形分岔。其数值预报,则采用分半法结合流动拓扑结构及典型截面处速度扩线上鞍点的变化来确定。计算结果表明,在计算的Pr数条件下,随Pr数的增加逆叉形分岔对应临界Ra数的取值也会提高。  相似文献   

4.
非定常流函数涡量方程的一种数值解法的研究   总被引:16,自引:0,他引:16  
李光正 《力学学报》1999,31(1):10-20
对非定常流函数涡量方程的数值求解方法进行了改进,其中流函数一阶导数即速度项采用四阶精度的Hermitian公式,对流项由一般二阶精度的中心差分提高到四阶精度离散差分,包含温度方程在内的离散方程组采用ADI迭代方法求得定常解.以无内热体及有一内热体的封闭方腔内自然对流为例,进行了不同瑞利数(Ra)条件下的数值研究.结果表明,该方法推导简单,求解精度高且计算稳定,适用于封闭腔内高瑞利数复杂混合对流的数值模拟.  相似文献   

5.
由于目前用于求解湍流自然对流流动与传热的k-ε模型在应用过程中存在不足,结合高雷诺数k-ε模型需要借助壁面函数法来确定壁面上相关参数值和低雷诺数k-ε模型在近壁区布置更多节点以便获得粘性底层详细信息的特点,重新定义了湍流普朗特数σt的计算式,提出了一种修正的k-ε新模型;利用该模型对封闭方腔内的湍流自然对流流动与传热进行了数值分析。结果表明:与文献中数值模拟结果相比,当108≤Ra≤1014时本文模型所得壁面平均努塞尔特数更接近文献中的实验值,与实验值之间的相对误差在8%以内;壁面的局部努塞尔特数与文献中的实验值吻合得较好。这说明本文模型用于求解封闭腔内湍流流动与传热问题是合适的,比其它湍流模型更能准确地描述封闭腔内湍流自然对流换热中边界层发展与壁面传热特性之间的内在联系。  相似文献   

6.
采用Boussinesq近似、不可压-理想气体及密度线性差分三种密度处理方法对大温差(?Tmax=1000K)竖直圆柱腔体的定常自然对流进行了模拟.首先,通过模拟一封闭方腔流动并与文献对比,验证了数值模拟方法的有效性.在此基础上,进一步研究了圆柱腔体中表面曲率κ、瑞利数Ra及温差ΔT的影响,特别是这些因素影响下不同密度处理方法对热壁面平均努谢尔特数Nuave数值结果的影响.结果表明,表面曲率κ是影响圆柱腔体自然对流换热的重要因素,且随着κ的不断减小,其Nuave数会逐渐趋近于方腔对流;同时,在温差ΔT和表面曲率κ较大时,基于Boussinesq近似的方法对Nuave的预测存在较大偏差.  相似文献   

7.
基于非正交多松弛系数格子Boltzmann(MRT-LB)方法建立了适用于多孔方腔自然对流计算模型,选取典型热流动问题分析了非正交转换矩阵的MRT-LB模型数值准确性和运算效率,布置两种粗糙多孔方腔模型进行研究。讨论了Rayleigh数、粗糙单元个数n、粗糙单元横纵比A等参数对方腔内流动传热的影响,同时给出了各个参数条件下腔内流场与温度场分布。结果表明,非正交MRT-LB模型具有很好的数值准确性和收敛速度,布置粗糙单元使得壁面处流线等温线发生变形,增大粗糙元单元个数n或横纵比A均会恶化方腔传热。  相似文献   

8.
为分析孔隙率不确定性对多孔介质方腔内自然对流换热的影响,发展了一种基于KL(Karhunen-Loeve展开)-蒙特卡罗随机有限元算法的随机多孔介质内自然对流不确定性分析数理模型及有限元数值模拟程序框架。通过K-L展开及基于拉丁抽样法生成多孔介质孔隙率随机实现,并耦合多孔介质自然对流有限元程序,进行随机多孔介质内自然对流传热数值模拟,得出了多孔介质内流场与温度场平均值与标准偏差,并分析了孔隙率不确定性条件下Da数对Nu数的影响。结果表明,孔隙率不确定性对多孔介质方腔内自然对流有重要影响。随机多孔介质内流场及温度场与确定性条件下的流场及温度场存在一定偏差,Nu数标准偏差随着Da的增大先增大后减小。  相似文献   

9.
为分析孔隙率不确定性对多孔介质方腔内自然对流换热的影响,发展了一种基于KL(Karhunen-Loeve展开)-蒙特卡罗随机有限元算法的随机多孔介质内自然对流不确定性分析数理模型及有限元数值模拟程序框架。通过K-L展开及基于拉丁抽样法生成多孔介质孔隙率随机实现,并耦合多孔介质自然对流有限元程序,进行随机多孔介质内自然对流传热数值模拟,得出了多孔介质内流场与温度场平均值与标准偏差,并分析了孔隙率不确定性条件下Da数对Nu数的影响。结果表明,孔隙率不确定性对多孔介质方腔内自然对流有重要影响。随机多孔介质内流场及温度场与确定性条件下的流场及温度场存在一定偏差,Nu数标准偏差随着Da的增大先增大后减小。  相似文献   

10.
侧加热腔内的自然对流   总被引:1,自引:0,他引:1  
徐丰  崔会敏 《力学进展》2014,44(1):201403
开展侧加热腔内自然对流的研究具有重大的环境及工业应用背景. 总结侧加热腔内水平温差驱动的自然对流的最新研究进展, 并概述相应的流动性质、动力机制和传热特性以及对不同无量纲控制参数的依赖也有重要的科学价值. 已取得的研究结果显示突然侧加热的腔内自然对流的发展可包括初始阶段、过渡阶段和定常或准定常阶段. 不同发展阶段的流动依赖于瑞利数、普朗特数及腔体的高宽比, 且定常或准定常阶段的流态可以是定常层流流动、非定常周期性流动或者湍流流动. 此外, 回顾了对流流动失稳机制的研究成果以及湍流自然对流方面的新进展. 最后, 展望了侧加热腔内的自然对流研究的前景.   相似文献   

11.
为了解具有密度极值流体瑞利-贝纳德对流特有现象和规律,利用有限容积法对长方体腔内关于密度极值温度对称加热-冷却时冷水瑞利-贝纳德对流的分岔特性进行了三维数值模拟,得到了不同条件下的对流结构型态及其分岔序列,分析了密度极值特性、瑞利数、热边界条件以及宽深比对瑞利-贝纳德对流的影响. 结果表明:具有密度极值冷水瑞利-贝纳德对流系统较常规流体更加稳定,且流动型态及其分岔序列更加复杂;相同瑞利数下多种流型可以稳定共存,各流型在相互转变中存在滞后现象;随着宽深比的增加,流动更易失稳,对流传热能力增强;系统在导热侧壁时比绝热侧壁更加稳定,对流传热能力有所减弱;基于计算结果,采用线性回归方法,得到了热壁传热关联式.  相似文献   

12.
本文利用分叉理论研究了流体饱和的二维多孔介质从底部加热所引起的自然对流,用有限差分方法确定对流的分叉进程;揭示其模式转换机理及分叉对非正常流动图象形成的影响;同时确定了矩形截面宽高比与临界端利数的关系。还提出了一个判别分支稳定笥的简明方法。  相似文献   

13.
Transient laminar natural convection of air in a tall cavity has been studied numerically. The Navier-Stokes and Energy equations were solved by the accurate projection method (PmIII), in which the derived Poisson equation for pressure potential was solved by the approximate factorization one method (AF1). The aspect ratio of the tall cavity is 16, and the Prandtl number of air filled in the tall cavity is 0.71. To obtain the numerical results of heat transfer by natural convection of air in the tall cavity, the second order schemes for the space and time discretizations were utilized. The availability of the numerical algorithm was also assessed by considering the natural convection of air in a square cavity which is differentially heated from side walls. It was found that the overall Nusselt numbers for the Rayleigh numbers covering the range from 1000 to 100000 reveal a good agreement with measured data. When Ra takes the value in the range from 100000 to 600000, the overall Nusselt number have a relative deviation less than 18% from the experimental data. For the suddenly heating mode, the multicellular flow pattern occurs when Rayleigh number belongs to the range of Ra from 7000 to 20000. or greater than 115000. At the critical number of cats' eye instability, the cell distance is just twice of the cavity width. This is rather similar to the observed result for Bénard problem. When Ra is over 115000, a further increase of heat flux across the tall cavity causes serious cell-breaking. There are 8 cells when Ra = 600000.  相似文献   

14.
康建宏  谭文长 《力学学报》2018,50(6):1436-1457
基于修正的Darcy模型, 介绍了多孔介质内黏弹性流体热对流稳定性研究的现状和主要进展. 通过线性稳定性理论, 分析计算多孔介质几何形状(水平多孔介质层、多孔圆柱以及多孔方腔)、热边界条件(底部等温加热、底部等热流加热、底部对流换热以及顶部自由开口边界)、黏弹性流体的流动模型(Darcy-Jeffrey, Darcy-Brinkman-Oldroyd以及Darcy-Brinkman -Maxwell模型)、局部热非平衡效应以及旋转效应对黏弹性流体热对流失稳的临界Rayleigh数的影响. 利用弱非线性分析方法, 揭示失稳临界点附近热对流流动的分叉情况, 以及失稳临界点附近黏弹性流体换热Nusselt数的解析表达式. 采用数值模拟方法, 研究高Rayleigh数下黏弹性流体换热Nusselt数和流场的演化规律,分析各参数对黏弹性流体热对流失稳和对流换热速率的影响.主要结果:(1)流体的黏弹性能够促进振荡对流的发生;(2)旋转效应、流体与多孔介质间的传热能够抑制黏弹性流体的热对流失稳;(3)在临界Rayleigh数附近,静态对流分叉解是超临界稳定的, 而振荡对流分叉可能是超临界或者亚临界的,主要取决于流体的黏弹性参数、Prandtl数以及Darcy数;(4)随着Rayleigh数的增加,热对流的流场从单个涡胞逐渐演化为多个不规则单元涡胞, 最后发展为混沌状态.   相似文献   

15.
作为空间自然对流热质输运的基本形式,界面张力梯度驱动对流是流动和传热强耦合的复杂非线性过程,也是一个多控制参数耦合作用的过程,表现出丰富的流动时空特征.界面张力梯度驱动对流是微重力流体物理的重要研究内容和学科前沿,同时在空间燃料输运过程和空间能源或热管利用等空间流体管理问题中均有重要应用.本文综述了界面张力梯度驱动对流...  相似文献   

16.
The transient natural convection in a fluid contained in a rectangular enclosure, the wall of which is maintained at a uniform temperature which changes at a steady rate, is approached by a numerical method. Numerical solutions are obtained forPr=0.73, 7.3 and 73 and a range of Rayleigh numbersRa=102 ~ 108. At relatively low Rayleigh numbers the flow is characterized by the development of double cells with flow up the center and down the sidewalk However it was found that an increase of the Rayleigh number leads to the development of strong secondary circulation on the axis of symmetry of the cavity near the top wall. Thus, as the Rayleigh number is increased the secondary cells grow in size. The effects of the secondary cells on the temperature field and heat transfer coefficients are discussed. Most results are obtained for the case of a square cavity (E=2) but the influence of the aspect ratio of the cavity is also studied forE=1 and 4.  相似文献   

17.
A finite volume multigrid procedure for the prediction of laminar natural convection flows is presented, enabling efficient and accurate calculations on very fine grids. The method is fully conservative and uses second-order central differencing for convection and diffusion fluxes. The calculations start on a coarse (typically 10 × 10 control volumes) grid and proceed to finer grids until the desired accuracy or maximum affordable storage is reached. The computing times increase thereby linearly with the number of control volumes. Solutions are presented for the flow in a closed cavity with side walls at different temperatures and insulated top and bottom walls. Rayleigh numbers of 104, 105 and 106 are considered. Grids as fine as 640 × 640 control volumes are used and the results are believed to be accurate to within 0–01%. Second-order monotonic convergence to grid-independent values is observed for all predicted quantities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号