首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
为分析孔隙率不确定性对多孔介质方腔内自然对流换热的影响,发展了一种基于KL(Karhunen-Loeve展开)-蒙特卡罗随机有限元算法的随机多孔介质内自然对流不确定性分析数理模型及有限元数值模拟程序框架。通过K-L展开及基于拉丁抽样法生成多孔介质孔隙率随机实现,并耦合多孔介质自然对流有限元程序,进行随机多孔介质内自然对流传热数值模拟,得出了多孔介质内流场与温度场平均值与标准偏差,并分析了孔隙率不确定性条件下Da数对Nu数的影响。结果表明,孔隙率不确定性对多孔介质方腔内自然对流有重要影响。随机多孔介质内流场及温度场与确定性条件下的流场及温度场存在一定偏差,Nu数标准偏差随着Da的增大先增大后减小。  相似文献   

2.
采用局部非热平衡模型,在方腔左侧壁面温度正弦波变化、右侧壁面温度均一的边界条件下,通过SIM-PLER算法数值研究了固体骨架发热多孔介质方腔内的稳态非达西自然对流,主要探讨了不同正弦波波动参数N及方腔的高宽比M/L对方腔内自然对流与传热的影响规律。计算结果表明:正弦波温度边界使得方腔内的流场出现了复杂的变化,流体及固体区域左侧壁面附近出现了周期性的正负变化的温度场分布,左侧壁面局部Nusselt数出现了周期性的震荡现象;存在一个最佳温度波动参数N=1,此时多孔介质方腔内的整体散热量达到最大值;增加方腔高宽比会显著地削弱方腔内的自然对流传热过程,小高宽比也会在一定的程度上削弱多孔介质方腔内的对流传热。  相似文献   

3.
基于非正交多松弛系数格子Boltzmann(MRT-LB)方法建立了适用于多孔方腔自然对流计算模型,选取典型热流动问题分析了非正交转换矩阵的MRT-LB模型数值准确性和运算效率,布置两种粗糙多孔方腔模型进行研究。讨论了Rayleigh数、粗糙单元个数n、粗糙单元横纵比A等参数对方腔内流动传热的影响,同时给出了各个参数条件下腔内流场与温度场分布。结果表明,非正交MRT-LB模型具有很好的数值准确性和收敛速度,布置粗糙单元使得壁面处流线等温线发生变形,增大粗糙元单元个数n或横纵比A均会恶化方腔传热。  相似文献   

4.
目前流体流动与传热问题的研究大都基于确定性工况条件,而现实流体流动与传热问题中存在着大量不确定性因素,计算流体力学的不确定性量化提供了一种理解流体物性、边界条件与初始条件等不确定性因素对模拟结果影响的能力.为揭示随机多孔介质内顺磁性流体热磁对流的传播规律与演化特征,本文发展了一种基于侵入式多项式混沌展开法的热磁对流不确...  相似文献   

5.
采用二阶全展开ETG分裂步有限元方法,通过对流动拓扑的详细分析,在排除网格密度影响的基础上,结合二分法给出封闭方腔内空气和水两种典型流体自然对流发生第一次分岔时的临界Rayleigh数。计算结果表明,该方法可用于进行不同Prandtl数条件下方腔内自然对流流动第一次分岔的数值预报,可作为后续各阶分岔及转捩数值预报研究的基础。在相应的条件下,封闭方腔内空气比水更容易发生分岔,且空气的流动结构相对于水表现出一定的倾斜性。  相似文献   

6.
采用二阶全展开Euler-Taylor-Galerkin分裂步有限元方法,在指定的网格密度条件下,在流动对应的普朗特数取为0.71,雷诺数取为104的情况下,数值分析了热肋、冷肋、上绝热肋、下绝热肋等四种不同属性肋片对封闭方腔内典型自然对流流动的影响.计算结果表明,肋片的存在对封闭方腔内的自然对流及相应的传热效率具有较强的影响,对流流动结构以及平均Nusselt数随肋片的属性发生较大的改变.  相似文献   

7.
颗粒材料的宏观物理力学性能依赖于颗粒堆积体系的细观组构性能,研究颗粒堆积体系的组构性能有重要意义。然而,当前对颗粒堆积体系组构性能的研究集中于球、椭球和正则多面体等规则几何体,还未有对复杂凸多面体颗粒堆积体系组构性能的系统研究。本文基于旋转椭球面黄金螺旋网格构造了一组复杂凸多面体颗粒模型(Polyκ-ngs),然后基于松弛算法获得了Polyκ-ngs多面体的随机紧密堆积结构,最后研究了几何形状参数对Polyκ-ngs多面体随机紧密堆积体系组构性能的影响。结果表明,长径比κ和顶点数量ngs均对堆积体系的组构性能有影响,κ是主要影响因素。Polyκ-ngs多面体随机紧密堆积结构中颗粒的位置分布均匀,长径比κ越接近1,顶点数量ngs越大时,堆积结构表现出更强的位置长程有序性;颗粒方向分布不均匀,长径比κ越远离1,不均匀程度越高;最高堆积分数随长径比κ的增大先增大后减小,在κ=1时达到峰值;配位数分布服从高斯分布,平均配位数随形状参数的变化和堆积分数不同;面-面接触数量随长径比κ的增大先增大后减小,和堆积分数变化规律一致。本研究为复杂凸多面体颗粒的随机紧密堆积提供了数值模拟方案,得出的结论对含有凸多面体颗粒材料的设计和性能优化具有参考意义。  相似文献   

8.
底部热加载条件下非线性流动传热问题的求解一直是多孔介质研究领域的难题。采用实验测试及数值模拟的方法,对底部热加载方式下两层多孔介质内热流耦合对流传热解的特性进行了研究。研究结果表明:在小瑞利数工况下,两层多孔介质内骨架内材料比例对温度场分布和非线性特性有重要影响;确定了非线性分叉、震荡解的特征值,并计算出了不同材料比例下的分叉及震荡所对应的临界瑞利数;通过实验验证了底部热加载时两层多孔介质内温度随时间呈非稳态震荡变化。结论可为实现热流分层、局部削弱或强化传热提供参考。  相似文献   

9.
构建了一个模拟复杂微通道内气体流动的多松弛格子Boltzmann模型。该模型采用动力学曲面滑移边界,考虑了微尺度效应和努森层影响。此外,为了更准确地描述微通道内气体的滑移速度,在模型中引入孔隙局部Kn数来代替平均Kn数。之后采用Poiseuille流对模型进行验证,模拟结果与用直接模拟蒙特卡洛方法和分子模拟结果吻合较好,证明了该模型模拟微通道内处于滑移区和过渡区气体流动的有效性。最后,采用该模型模拟多孔介质内气体渗流过程。结果表明,随着孔隙平均Kn数的增加,多孔介质内的高渗区域增加,且优先从小孔隙中开始增加,这是由于小孔隙中微尺度效应更加明显,相对大孔隙流动阻力更小所致。  相似文献   

10.
数值分析了微重力下圆形载流线圈倾斜时多孔介质方腔内空气热磁对流. 磁场计算采用毕奥--萨伐定律求解; 动量方程与能量方程分别采用达西模型与局部热非平衡模型求解. 计算结果表明随着磁场力数\gamma 数和Da数的增加, 方腔内对流变得越来越强. 线圈倾斜角x_{\rm euler}从0^\circ到90^\circ变化时, 对流结果关于x_{\rm euler}=45^\circ呈现对称分布. Nu_{\rm m}数随线圈倾斜角的改变而变化且每个工况下局部最大Nu_{\rm m}数出现在x_{\rm euler}=45^\circ. 局部最小Nu_{\rm m}数出现在x_{\rm euler}=0^\circ, 90^\circ.   相似文献   

11.
The lattice Boltzmann method (LBM) is used to simulate the effect of magnetic field on the natural convection in a porous cavity. The sidewalls of the cavity are heated sinusoidally with a phase derivation, whereas the top and bottom walls are thermally insulated. Numerical simulation is performed, and the effects of the pertinent parameters, e.g., the Hartmann number, the porosity, the Darcy number, and the phase deviation, on the fluid flow and heat transfer are investigated. The results show that the heat transfer is affected by the temperature distribution on the sidewalls clearly. When the Hartmann number is 0, the maximum average Nusselt number is obtained at the phase deviation 90°. Moreover, the heat transfer enhances when the Darcy number and porosity increase, while decreases when the Hartman number increases.  相似文献   

12.
Double-diffusive natural convection in a fluid saturated porous medium has been investigated using the finite element method. A generalised porous medium model is used to study both Darcy and non-Darcy flow regimes in an axisymmetric cavity. Results indicate that the Darcy number should be a separate parameter to understand flow characteristics in non-Darcy regime. The influence of porosity on heat and mass transfer is significant and the transport rates may differ by 25% or more, at higher Darcy and Rayleigh numbers. When compared with the Darcy and other specialised models of Brinkman and Forchheimer, the present generalised model predicts the least heat and mass transfer rates. It is also observed that an increase in radius ratio leads to higher Nusselt and Sherwood numbers along the inner wall.  相似文献   

13.
This work is dealing with the natural convection heat transfer in a square filled with porous medium that has been extended according to the Nield and Kuznetsov model to tridisperse porous medium. Considering impermeable walls which the horizontal ones are insulated and vertical ones are assumed to be isothermal, the governing equations are set as the three equations for momentum and three equations for energy for three phases of porosity and are numerically solved utilizing finite element method. In this study isothermal contours, streamlines and Nusselt number values are foremost criteria which are presented for three levels of porosity. The influence of various governing parameters on the heat transfer is investigated.  相似文献   

14.
Double diffusive convection of anomalous density fluids in a porous cavity   总被引:1,自引:0,他引:1  
A numerical study has been performed to analyze the combined effect of temperature and species gradients on the buoyancy-driven natural convection flow of cold water near its density extremum contained in a porous cavity. The governing equations are descretized using the finite volume method. The results of the investigation are presented in the form of steady-state streamlines, velocity vectors, isotherms, and isoconcentrationlines. The results are discussed for different porosities, Darcy numbers, and Grashof numbers. The heat and mass transfer rates calculated are found to behave nonlinearly with hot wall temperature. The heat and mass transfer are increased with increasing Darcy number and porosity. It is found that the convective heat and mass transfer rate are greatly affected by the presence of density maximum.  相似文献   

15.
Transient natural convection in a vertical cylinder partially filled with a porous media with heat-conducting solid walls of finite thickness in conditions of convective heat exchange with an environment has been studied numerically. The Darcy and Brinkman-extended Darcy models with Boussinesq approximation have been used to solve the flow and heat transfer in the porous region. The Oberbeck–Boussinesq equations have been used to describe the flow and heat transfer in the pure fluid region. The Beavers–Joseph empirical boundary condition is considered at the fluid–porous layer interface with the Darcy model. In the case of the Brinkman-extended Darcy model, the two regions are coupled by equating the velocity and stress components at the interface. The governing equations formulated in terms of the dimensionless stream function, vorticity, and temperature have been solved using the finite difference method. The main objective was to investigate the influence of the Darcy number $10^{-5}\le \hbox {Da}\le 10^{-3}$ , porous layer height ratio $0\le d/L\le 1$ , thermal conductivity ratio $1\le k_{1,3}\le 20$ , and dimensionless time $0\le \tau \le 1000$ on the fluid flow and heat transfer on the basis of the Darcy and non-Darcy models. Comprehensive analysis of an effect of these key parameters on the Nusselt number at the bottom wall, average temperature in the cylindrical cavity, and maximum absolute value of the stream function has been conducted.  相似文献   

16.
Fluid transport and the associated heat transfer through porous media is of immense importance because of its numerous practical applications. In view of the widespread applications of porous media flow, the present study attempts to investigate the forced convective heat transfer in the limiting condition for the flow through porous channel. There could be many areas, where heat transfer through porous channel attain some limiting conditions, thus, the analysis of limiting convective heat transfer is far reaching. The primary aim of the present study is focused on the limiting forced convection analysis considering the flow of Newtonian fluid between two asymmetrically heated parallel plates filled with saturated porous media. Utilizing a few assumptions, which are usually employed in the literature, an analytical methodology is executed to obtain the closed-form expression of the temperature profile, and in the following the expression of the limiting Nusselt numbers. The parametric variations of the temperature profile and the Nusselt numbers in different cases have been shown highlighting the influential role of different performance indexing parameters, like Darcy number, porosity of the media, and Brinkman number of forced convective heat transfer in porous channel. In doing so, the underlying physics of the transport characteristics of heat has been delineated in a comprehensive way. Moreover, a discussion has been made regarding an important feature like the onset of point of singularity as appeared on the variation of the Nusselt number from the consideration of energy balance in the flow field, and in view of second law of thermodynamics.  相似文献   

17.
The triple-diffusive mixed convection heat and mass transfer of a mixture is analyzed in an enclosure filled with a Darcy porous medium. The mass transfer buoyancy effects due to concentration gradients of the dispersed components (pollutant components) are taken into account using the Boussinesq approximation model. The governing equations are transformed into a non-dimensional form, and six groups of non-dimensional parameters, including Darcy–Rayleigh number, Peclet number, two Lewis numbers for pollutant components 1 and 2 and two buoyancy ratio parameters for pollutant components 1 and 2, are introduced. The governing equations are numerically solved for various combinations of non-dimensional parameters using the finite element method. The effect of each group of non-dimensional parameters on the pollutant distribution and the heat transfer in the cavity is discussed. The results indicate that the presence of one pollutant component can significantly affect the pollutant distribution of the other component. When the Lewis number of a pollutant component is small, the increase in the bouncy ratio parameter of the proposed component always increases the Nusselt and Sherwood numbers in the cavity.  相似文献   

18.
A numerical study is performed to analyse heat and mass transfer phenomena due to natural convection in a composite cavity containing a fluid layer overlying a porous layer saturated with the same fluid. The flow in the porous region is modelled using Brinkman–Forchheimer-extended Darcy model that includes both the effect of macroscopic shear (Brinkman effect) and flow inertia (Forchheimer effect). The vertical walls of the two-dimensional enclosure are isothermal whilst the horizontal walls are adiabatic. The two regions are coupled by equating the velocity and stress components at the interface. The resulting coupled equations in non-dimensional form are solved by an alternating direction implicit method by transforming them into parabolic form by the addition of false transient terms. The numerical results show that the amount of fluid penetration into the porous layer depends strongly upon the Darcy, thermal and solutal Rayleigh numbers. Average Nusselt number decreases while average Sherwood number increases with an increase of the Lewis number. The transfer of heat and mass on the heated wall near the interface depends strongly on the Darcy number. Received on 11 May 1998  相似文献   

19.
In this work, the magnetohydrodynamics (MHD) natural convection heat transfer problem inside a porous medium filled with inclined rectangular enclosures is investigated numerically. The boundary conditions selected on the enclosure are two adiabatic and two isothermal walls. The governing equations, continuity, and Forchheimer extension of the Darcy law and energy are transformed into dimensionless forms by using a set of suitable variables, and then solved by using a finite difference scheme. The governing parameters are the magnetic influence number, the Darcy Rayleigh number, the inclination angle, and the aspect ratio of the enclosure. It is found that the magnetic influence number and the inclination angle have pronounced effects on the fluid flow and heat transfer in porous media-filled enclosures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号