首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
基于修正的Darcy模型,介绍了多孔介质内黏弹性流体热对流稳定性研究的现状和主要进展.通过线性稳定性理论,分析计算多孔介质几何形状(水平多孔介质层、多孔圆柱以及多孔方腔)、热边界条件(底部等温加热、底部等热流加热、底部对流换热以及顶部自由开口边界)、黏弹性流体的流动模型(Darcy-Jeffrey, DarcyBrinkman-Oldroyd以及Darcy-Brinkman-Maxwell模型)、局部热非平衡效应以及旋转效应对黏弹性流体热对流失稳的临界Rayleigh数的影响.利用弱非线性分析方法,揭示失稳临界点附近热对流流动的分叉情况,以及失稳临界点附近黏弹性流体换热Nusselt数的解析表达式.采用数值模拟方法,研究高Rayleigh数下黏弹性流体换热Nusselt数和流场的演化规律,分析各参数对黏弹性流体热对流失稳和对流换热速率的影响.主要结果:(1)流体的黏弹性能够促进振荡对流的发生;(2)旋转效应、流体与多孔介质间的传热能够抑制黏弹性流体的热对流失稳;(3)在临界Rayleigh数附近,静态对流分叉解是超临界稳定的,而振荡对流分叉可能是超临界或者亚临界的,主要取决于流体的黏弹性参数、Prandtl数以及Darcy数;(4)随着Rayleigh数的增加,热对流的流场从单个涡胞逐渐演化为多个不规则单元涡胞,最后发展为混沌状态.  相似文献   

2.
本文利用分叉理论研究了流体饱和的二维多孔介质从底部加热所引起的自然对流,用有限差分方法确定对流的分叉进程;揭示其模式转换机理及分叉对非正常流动图象形成的影响;同时确定了矩形截面宽高比与临界端利数的关系。还提出了一个判别分支稳定笥的简明方法。  相似文献   

3.
多孔介质中热对流的分叉机理研究   总被引:3,自引:1,他引:3  
张涵信 《力学学报》1994,26(2):129-138
本文利用解析分析方法研究了数值模拟发现的多孔介质层中出现的对流分叉机理,指出控制方程中的Rayleigh数,是决定流动的特征参数。当Rayleigh数小于临界数值时,多孔介质内流动处于静止传热状态,并且这种状态是稳定的。如果Rayleigh数大于临界数值,非线性方程出现分叉解,文中指出,存在多个使平凡解失稳而分叉的临界Rayleigh数,当Rayleigh数由小到大经历这些临界数值时,其由平凡解发展起来的分叉解的流态,依次由单回流区转变为双回流区及三回流区。理论分析给出了分叉解和分叉解的振幅方程,阐明了分叉的机理,其结论和数值结果定性一致.  相似文献   

4.
底部热加载条件下非线性流动传热问题的求解一直是多孔介质研究领域的难题。采用实验测试及数值模拟的方法,对底部热加载方式下两层多孔介质内热流耦合对流传热解的特性进行了研究。研究结果表明:在小瑞利数工况下,两层多孔介质内骨架内材料比例对温度场分布和非线性特性有重要影响;确定了非线性分叉、震荡解的特征值,并计算出了不同材料比例下的分叉及震荡所对应的临界瑞利数;通过实验验证了底部热加载时两层多孔介质内温度随时间呈非稳态震荡变化。结论可为实现热流分层、局部削弱或强化传热提供参考。  相似文献   

5.
基于Oldroyd-B型粘弹性流体模型,采用同心旋转圆柱间非线性动力系统分析了流体的弹性对轴对称Taylor涡稳定性的影响.分析结果表明,对于弱弹性流体,Taylor涡出现时,系统存在超临界分岔;而对于强弹性流体则出现亚临界分岔.在小间隙大扰动条件下,采用有限差分法分析了非线性效应对系统稳定性的影响.数值计算结果表明,随着流动速度的增加,润滑油膜的失稳结构与流体的弹性有关,对于弱弹性流,流体以同宿轨道分岔失稳;强弹性流则出现倍周期分岔,直至发生混沌,流场最终发展为湍流.  相似文献   

6.
多孔介质中的非达西自然对流的分岔研究   总被引:10,自引:0,他引:10  
孔祥言  吴建兵 《力学学报》2002,34(2):177-185
利用分岔理论研究了多孔介质底部加热所引起的非达西自然对流。用有限差分方法计算了对流的分岔;确定了Beta数与临界瑞利数的关系。结果表明:随着Be从0增大到1,出现分岔的单胞对流的临界瑞利数Rac从39.35单调地增大到41.15。双胞对流亦有类似的趋势。这说明惯性-湍流效应有使对流稳定性增强的趋势。  相似文献   

7.
在低雷诺数下,忽略惯性影响的黏弹性流体中存在的非线性应力可以引发湍流现象.在流体力学的教学过程中,为了让学生对此有直观认识,设计制作了黏弹性流体实验台.采用高速摄影的方法,对流体由弹性失稳而引起的流态变化过程进行观测.在教学实践中发现,该实验台操作简单,能够非常直观地对流体弹性引起的流动失稳过程进行显示.通过学生自己动手实践,极大地加深了对流体弹性效应引起的流动失稳过程的理解.  相似文献   

8.
本文基于热局部非平衡(LTNE)条件和加权平均温度概念,并假设孔隙流体由溶质和溶剂两组元组成,对页岩(饱和多孔介质),推导给出了一种LTNE条件下的化学-热-弹性模型,同时讨论了耦合方程组的解耦求解问题.作为模型的应用,考虑无限大平面含一圆形孔的情况,研究了冷/热对流以及溶质摩尔分数突变边界条件下圆孔附近的孔隙压力和化-热应力问题,用Laplace变换得到了平面轴对称情况下有关力学变量的表达式.数值分析了圆孔边界上冷/热对流的Biot数和溶质摩尔分数改变量对圆孔附近孔隙压力和化-热应力的影响.结果表明:在Biot数为中等值(1~5)范围内,LTNE效应是非常明显的;化学作用对孔隙压力和固相应力的影响不可忽视.  相似文献   

9.
Rayleigh-Benard模型是研究对流稳定性,时空结构和非线性特性的典型模型之一。本文的兴趣集中在二维矩形腔体中混合流体对流场的结构方面。利用SIMPLE算法数值求解流体力学方程组,模拟了充分发展的二维矩形腔体中混合流体对流。结果说明偏离传导失去稳定的系统经过亚临界分叉产生了振动对流。进一步,我们给出了分叉曲线及其沿分叉曲线的上部分支三个Rayleigh数对应的对流图案的垂直速度场,流线,温度场,浓度场和Shadowgraph强度的等值线图。所有场的结构分析表明浓度场及Shadowgraph强度的等值线图可以很好的特征行进波的运动特性。  相似文献   

10.
采用局部非热平衡模型,在方腔左侧壁面温度正弦波变化、右侧壁面温度均一的边界条件下,通过SIM-PLER算法数值研究了固体骨架发热多孔介质方腔内的稳态非达西自然对流,主要探讨了不同正弦波波动参数N及方腔的高宽比M/L对方腔内自然对流与传热的影响规律。计算结果表明:正弦波温度边界使得方腔内的流场出现了复杂的变化,流体及固体区域左侧壁面附近出现了周期性的正负变化的温度场分布,左侧壁面局部Nusselt数出现了周期性的震荡现象;存在一个最佳温度波动参数N=1,此时多孔介质方腔内的整体散热量达到最大值;增加方腔高宽比会显著地削弱方腔内的自然对流传热过程,小高宽比也会在一定的程度上削弱多孔介质方腔内的对流传热。  相似文献   

11.
In this article, linear and nonlinear thermal instability in a rotating anisotropic porous layer with heat source has been investigated. The extended Darcy model, which includes the time derivative and Coriolis term has been employed in the momentum equation. The linear theory has been performed by using normal mode technique, while nonlinear analysis is based on minimal representation of the truncated Fourier series having only two terms. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. Effects of parameters on critical Rayleigh number has also been investigated. A weak nonlinear analysis based on the truncated representation of Fourier series method has been used to find the Nusselt number. The transient behavior of the Nusselt number has also been investigated by solving the finite amplitude equations using a numerical method. Steady and unsteady streamlines, and isotherms have been drawn to determine the nature of flow pattern. The results obtained during the analysis have been presented graphically.  相似文献   

12.
The weakly nonlinear stability of the triple diffusive convection in a Maxwell fluid saturated porous layer is investigated. In some cases, disconnected oscillatory neutral curves are found to exist, indicating that three critical thermal Darcy-Rayleigh numbers are required to specify the linear instability criteria. However, another distinguishing feature predicted from that of Newtonian fluids is the impossibility of quasi-periodic bifurcation from the rest state. Besides, the co-dimensional two bifurcation points are located in the Darcy-Prandtl number and the stress relaxation parameter plane. It is observed that the value of the stress relaxation parameter defining the crossover between stationary and oscillatory bifurcations decreases when the Darcy-Prandtl number increases. A cubic Landau equation is derived based on the weakly nonlinear stability analysis. It is found that the bifurcating oscillatory solution is either supercritical or subcritical, depending on the choice of the physical parameters. Heat and mass transfers are estimated in terms of time and area-averaged Nusselt numbers.  相似文献   

13.
The linear and weakly nonlinear thermal convection in a rotating porous layer is investigated by constructing a simplified model involving a system of fifth-order nonlinear ordinary differential equations. The flow in the porous medium is described by Lap wood-Brinkman-extended Darcy model with fluid viscosity different from effective viscosity. Conditions for the occurrence of possible bifurcations are obtained. It is established that Hopf bifurcation is possible only at a lower value of the Rayleigh number than that of simple bifurcation. In contrast to the non-rotating case, it is found that the ratio of viscosities as well as the Darcy number plays a dual role on the steady onset and some important observations are made on the stability characteristics of the system. The results obtained from weakly nonlinear theory reveal that, the steady bifurcating solution may be either sub-critical or supercritical depending on the choice of physical parameters. Heat transfer is calculated in terms of Nusselt number.  相似文献   

14.
Linear and non-linear thermal instability in a rotating anisotropic porous medium, saturated with viscoelastic fluid, has been investigated for free-free surfaces. The linear theory is being related to the normal mode method and non-linear analysis is based on minimal representation of the truncated Fourier series analysis containing only two terms. The extended Darcy model, which includes the time derivative and Coriolis terms has been employed in the momentum equation. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. A weak non-linear theory based on the truncated representation of Fourier series method is used to find the thermal Nusselt number. The transient behaviour of the Nusselt number is also investigated by solving the finite amplitude equations using a numerical method. The results obtained during the analysis have been presented graphically.  相似文献   

15.
The nonlinear stability of thermal convection in a layer of an Oldroyd-B fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffusivity is investigated with the perturbation method. A modified Darcy-Oldroyd model is used to describe the flow in a layer of an anisotropic porous medium. The results of the linear instability theory are delineated. The thresholds for the stationary and oscillatory convection boundaries are established, and the crossover boundary between them is demarcated by identifying a codimension-two point in the viscoelastic parameter plane. The stability of the stationary and oscillatory bifurcating solutions is analyzed by deriving the cubic Landau equations. It shows that these solutions always bifurcate supercritically. The heat transfer is estimated in terms of the Nusselt number for the stationary and oscillatory modes. The result shows that, when the ratio of the thermal to mechanical anisotropy parameters increases, the heat transfer decreases.  相似文献   

16.
Stability analysis of double-diffusive convection for viscoelastic fluid with Soret effect in a porous medium is investigated using a modified-Maxwell-Darcy model. We use the linear stability analysis to investigate how the Soret parameter and the relaxation time of viscoelastic fluid effect the onset of convection and the selection of an unstable wavenumber. It is found that the Soret effect is to destabilize the system for oscillatory convection. The relaxation time also enhances the instability of the system. The effects of Soret coefficient and relaxation time on the heat transfer rate in a porous medium are studied using the nonlinear stability analysis, the variation of the Nusselt number with respect to the Rayleigh number is derived for stationary and oscillatory convection modes. Some previous results can be reduced as the special cases of the present paper.  相似文献   

17.
Buoyancy-driven convection of a viscoelastic fluid saturated in an open-top porous square box is studied based on a modified Darcy's law. The results are compared with those for a Newtonian fluid under the same boundary conditions and those for the viscoelastic fluid under a closed-top boundary. In particular, the critical Darcy–Rayleigh number Ra for onset of convection is determined first by using the linear stability theory. Then the effects of the relaxation time and the retardation time of the viscoelastic fluid on the heat transfer rate and the flow pattern are investigated numerically. The results reveal some interesting properties of thermal convection for the viscoelastic fluid. The relaxation time makes the fluid easier to destabilize while the retardation time tends to stabilize the fluid motion in the porous medium, and larger heat transfer rate can be achieved with larger value of the relaxation time and decreased retardation time. Furthermore, larger relaxation time facilitates earlier bifurcation of the flow pattern as Ra increases, but bifurcation can be postponed with increased retardation time. For larger ratio of relaxation time over retardation time, the flow pattern is more complicated and the frequency of flow oscillation also increases. Finally, large ratio of relaxation time over retardation time can make the open-top boundary impermeable due to the viscoelastic effect on the fluid.  相似文献   

18.
The onset of convection in a horizontal layer of a porous medium saturated with a viscoelastic nanofluid was studied in this article. The modified Darcy model was applied to simulate the momentum equation in porous media. An Oldroyd-B type constitutive equation was used to describe the rheological behavior of viscoelastic nanofluids. The model used for the viscoelastic nanofluid incorporates the effects of Brownian motion and thermophoresis. The onset criterion for stationary and oscillatory convection was analytically derived. The effects of the concentration Rayleigh number, Prandtl number, Lewis number, capacity ratio, relaxation, and retardation parameters on the stability of the system were investigated. Oscillatory instability is possible in both bottom- and top-heavy nanoparticle distributions. Results indicated that there is competition among the processes of thermophoresis, Brownian diffusion, and viscoelasticity that causes the convection to set in through oscillatory rather than stationary modes. Regimes of stationary and oscillatory convection for various parameters were derived and are discussed in detail.  相似文献   

19.
A linear stability analysis is carried out to study viscoelastic fluid convection in a horizontal porous layer heated from below and cooled from above when the solid and fluid phases are not in a local thermal equilibrium. The modified Darcy–Brinkman–Maxwell model is used for the momentum equation and two-field model is used for the energy equation each representing the solid and fluid phases separately. The conditions for the onset of stationary and oscillatory convection are obtained analytically. Linear stability analysis suggests that, there is a competition between the processes of viscoelasticity and thermal diffusion that causes the first convective instability to be oscillatory rather than stationary. Elasticity is found to destabilize the system. Besides, the effects of Darcy number, thermal non-equilibrium and the Darcy–Prandtl number on the stability of the system are analyzed in detail.  相似文献   

20.
Based on a modified Darcy–Brinkman–Maxwell model, a linear stability analysis of a Maxwell fluid in a horizontal porous layer heated from below by a constant flux is carried out. The non-oscillatory instability and oscillatory instability with different hydrodynamic boundaries such as rigid and free surfaces at the bottom are studied. Compared with the rigid surface cases, onset of fluid motion due to non-oscillatory instability and oscillatory instability is found to occur both more easily for the system with a free bottom surface. The critical Rayleigh number for onset of fluid motion due to non-oscillatory instability is lower with a constant flux heating bottom than with an isothermal heating bottom, but the result due to oscillatory instability is in contrast. The effects of the Darcy number, the relaxation time, and the Prandtl number on the critical Rayleigh number are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号