首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Bi3.95Er0.05Ti3O12 (BErT) thin films were prepared on Pt/Ti/SiO2/Si and indium-tin-oxide (ITO)-coated glass substrates at room temperature by pulsed laser deposition. These thin films were amorphous with uniform thickness. Excellent dielectric characteristics have been confirmed. The amorphous BErT thin films deposited on the Pt/Ti/SiO2/Si and ITO-coated glass substrates exhibited almost the same dielectric constant of 52 with a low dielectric loss of less than 0.02 at 1 kHz. Meanwhile, the dielectric properties of the thin films had an excellent bias voltage stability and thermal stability. The amorphous BErT thin films might have potential applications in microelectronic and optoelectronic devices.  相似文献   

2.
SrBi2Ta2O9 (SBT) ferroelectric thin films with different preferred orientations were deposited by pulsed laser deposition (PLD). Several methods have been developed to control the preferred orientation of SBT thin films. For SBT films deposited directly on Pt/TiO2/SiO2/Si substrates and in situ crystallized at the deposition temperature, the substrate temperature has a significant impact on the orientation and the remnant polarization (Pr) of the films; a higher substrate temperature benefits the formation of (115) texture and larger grain size. The films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C are (115)-oriented and exhibit 2Pr of 6 μC/cm2. (115)- and (200)-predominant films can be formed by using a La0.85Sr0.15CoO3 (LSCO) buffer layer or by annealing amorphous SBT films deposited on Pt/TiO2/SiO2/Si substrates at 450 °C using rapid thermal annealing (RTA). These films exhibit good electric properties; 2Pr of the films are up to 12 μC/cm2 and 17 μC/cm2, respectively. The much larger 2Pr of the films deposited on the LSCO buffer layer and of the films obtained by RTA than 2Pr of the films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C is attributed to a stronger (200) texture. Received: 30 January 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

3.
In this study, SnO2/TiO2 thin films are fabricated on SiO2/Si and Corning glass 1737 substrates using a R.F. magnetron sputtering process. The gas sensing properties of these films under an oxygen atmosphere with and without UV irradiation are carefully examined. The surface structure, morphology, optical transmission characteristics, and chemical compositions of the films are analyzed by atomic force microscopy, scanning electron microscopy and PL spectrometry. It is found that the oxygen sensitivity of the films deposited on Corning glass 1737 substrates is significantly lower than that of the films grown on SiO2/Si substrates. Therefore, the results suggest that SiO2/Si is an appropriate substrate material for oxygen gas sensors fabricated using thin SnO2/TiO2 films.  相似文献   

4.
CaCu3Ti4O12 (CCTO) thin films have been prepared by a pulsed-laser-deposition method on LaNiO3 buffered Pt/Ti/SiO2/Si substrates, and their microstructure and dielectric properties have been compared with those of the films deposited directly on Pt/Ti/SiO2/Si substrates. The crystalline structure and the surface morphology of the CCTO thin films were markedly affected by the bottom electrodes. Both the films show temperature-independent dielectric properties in a wide temperature range, which is similar to those properties obtained in single-crystal or epitaxial thin films, while the room-temperature dielectric constant of the 350-nm-thick CCTO films on LaNiO3/Pt/Ti/SiO2/Si substrates at 100 kHz was found to be 2300, which was increased significantly compared with that obtained in the films on Pt/Ti/SiO2/Si substrates. Using the impedance spectroscopy technique, it has been suggested that the high dielectric constant response of the CCTO thin films originates from the grain boundary layer mechanism as found in internal barrier layer capacitors. PACS 77.55.+f; 81.15.Fg; 68.55.-a  相似文献   

5.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

6.
The optical properties of 30-layer [nc-Si:SiO2/SiO2]30 periodic films have been studied. The films were prepared by alternately evaporating SiO and SiO2 onto Si(100) substrates, followed by annealing at 1100?°C. Spectroscopic ellipsometry spectrum analysis was used to determine the optical constants of the samples via the Forouhi?CBloomer model. The optical bandgap of a single periodic film is calculated. The photoluminescence (PL) spectra of three samples with different thicknesses clearly show that there are two physical origins of the PL process.  相似文献   

7.
Pb1−XLaXTiO3 thin films, (X=0.0; 13 and 0.27 mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si (1 1 1), Si (1 0 0) and glass substrates by spin coating, and annealed in the 200-300°C range in an O2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration.  相似文献   

8.
High-quality ZnO thin films were grown on single-crystalline Al2O3(0001) and amorphous SiO2/Si(100) substrates at 400–640 °C using laser molecular beam epitaxy. For film growth, the third harmonics of a pulsed Nd:YAG laser were illuminated on a ZnO target. The ZnO films were epitaxially grown on Al2O3(0001) with the narrow X-ray diffraction full width at half maximum (FWHM) of 0.04° and the films on SiO2/Si(100) exhibited a preferred c-axis orientation. Furthermore, the films exhibited excellent optical properties in photoluminescence (PL) measurements with very sharp excitonic and weak deep-level emission peaks. At 15 K, PL FWHM values of the films grown on Al2O3(0001) and SiO2/Si(100) were 3 and 18 meV, respectively. Received: 8 May 2001 / Accepted: 18 September 2001 / Published online: 20 December 2001  相似文献   

9.
Chemical-vapor-deposited (CVD) nanostructured thin films have been recently developed to overcome the limitations of thin films from one material class. In particular polymer/SiO2 nanocomposite thin films have been developed to reduce power consumption, cross-talk, and RC delay in the next generation of ultralarge-scale integrated devices. Since polymers mainly possess electronic polarization they inherently have a low dielectric constant. However, they often suffer from poor dielectric anisotropy, low elastic and shear moduli, and have poor resistance to metallic diffusion. As a proof of concept, poly(chloro-p-xylylene)/SiO2 thermal CVD nanocomposites have been developed to overcome such material deficiencies. Additionally, the CVD process allows for high manufacturing throughput and compositional control in situ, both potentially advantageous for IC fabrication. The study here focuses on the polymeric phase of the nanocomposite, which as a homopolymer can possess ≈60% crystallinity and a positive optical birefringence of 0.034, both post-deposition-annealed just before the polymer’s melting point. With increasing volume percent of SiO2, the percent crystallinity is reduced, the thin film becomes more isotropic and the index of refraction can be varied depending on the volume percent SiO2. Received: 15 December 1999 / Accepted: 7 January 2000 / Published online: 5 April 2000  相似文献   

10.
J.C. Fan 《Applied Surface Science》2008,254(20):6358-6361
p-Type ZnO:As films with a hole concentration of 1016-1017 cm−3 and a mobility of 1.32-6.08 cm2/V s have been deposited on SiO2/Si substrates by magnetron sputtering. XRD, SEM, Hall measurements are used to investigate the structural and electrical properties of the films. A p-n homojunction comprising an undoped ZnO layer and a ZnO:As layer exhibits a typical rectifying behavior. Our study demonstrates a simple method to fabricate reproducible p-type ZnO film on the SiO2/Si substrate for the development of ZnO-based optoelectronic devices on Si-based substrates.  相似文献   

11.
SBN thin films were grown on MgO and Silicon substrates by PLD and RF-PLD (radiofrequency assisted PLD) starting from single crystal Sr0.6Ba0.4Nb2O6 and ceramic Sr0.5Ba0.5Nb2O6 stoichiometric targets. Morphological and structural analyses were performed on the SBN layers by AFM and XRD and optical properties were measured by spectroellipsometry. The films composition was determined by Rutherford Backscattering Spectrometry. The best set of experimental conditions for obtaining crystalline, c-axis preferential texture and with dominant 31° in-plane orientation relative to the MgO (100) axis is identified.  相似文献   

12.
Textured LixNi2-xO (LNO) thin films have been fabricated on (001)MgO substrates by pulsed laser deposition technique. The as-deposited LNO films shows a conductivity of 2.5×10-3 Ω m and possess a transmittance of about 35% in the visible region. Subsequent deposition of Sr0.6Ba0.4Nb2O6 (SBN60) thin film on these LNO-coated MgO substrates resulted in a textured SBN layer with a 〈001〉 orientation perpendicular to the substrate plane. Phi scans on the (221) plane of the SBN layer indicated that the films have two in-plane orientations with respect to the substrate. The SBN unit cells were rotated in the plane of the film by ± 8.2° as well as ± 45° with respect to the LNO/MgO substrate. Besides the highly (00l)-orientation, the SBN films also exhibited a dense microstructure as shown by scanning electron microscopy. The electro-optic coefficient (r33) of the SBN film was measured to be 186 pm/V. On the basis of our results, we have demonstrated that the LNO film can be used as a buffer layer as well as a transparent bottom electrode for waveguide applications. The SBN/LNO heterostructure is also a suitable candidate for integrated electro-optics devices. PACS  42.79.Gn; 42.82.Et; 78.20.Ci  相似文献   

13.
Pure perovskite phase and crack-free KTa0.5Nb0.5O3 thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. The structure and orientation were analyzed by X-ray diffraction. The optical properties were investigated by an ellipsometer. The relationship between the refractive index dispersive behavior and internal structure was analyzed by Sellmeier dispersion model and single electronic oscillator approximation. The parameters of room temperature monomial Sellmeier oscillator were calculated. And the refractive index dispersive parameter E0/S0 of KTa0.5Nb0.5O3 thin films on Pt/Ti/SiO2/Si substrates is (6.72 ± 0.04) × 10−14 eV m2, which is consistent with those of KTN crystals and compounds with ABO3 perovskite type structure.  相似文献   

14.
用化学溶液方法在宝石衬底及有LaNiO3缓冲层的Pt/TiO2/SiO2/Si衬底上制备了92%Pb(Mg1/3Nb2/3)O3-8%PbTiO3(PMNT)薄膜,X射线衍射测试结果表明:在有LaNiO3缓冲层的Pt/TiO2/SiO2/Si衬底上制备的PMNT薄膜几乎是纯钙钛矿相,且薄膜 关键词: PMNT薄膜 光学性能 化学溶液法  相似文献   

15.
曹晓燕  叶辉  邓年辉  郭冰  顾培夫 《物理学报》2004,53(7):2363-2367
采用NbCl5作为先驱物,利用溶胶-凝胶法在Si(100)衬底上成功获得高度择优取向的铁电铌酸锶钡(SBN)薄膜.与用Nb(OC2H5)5作为先驱物的SBN薄膜相比,NbCl5配制的薄膜前驱溶液中含有一定数量的K离子.K离子的含量对SBN薄膜取向的影响存在一个最优值.二次离子质谱测试发现,K离子对SBN晶胞的溶入和对Si衬底的渗透能够同时使SBN晶胞和Si晶胞产生微小扭曲,从而起到调整薄膜与衬底的匹配关系,并最终促使SBN薄膜c轴高度择优取向的生长.测试了薄膜的光学特性. 关键词: 铌酸锶钡 溶胶-凝胶方法 择优取向  相似文献   

16.
3 were successfully grown on Pt-coated SrTiO3 single-crystal substrates by metalorganic chemical vapor deposition (MOCVD) and were investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. The as-deposited thin films were found to be highly (001)-oriented with an average grain size of about 0.3 μm. Both a decrease of the tetragonality and a frequency downshift of the long-wavelength optical phonons were observed and attributed to the effect of compressive stress in the thin films. However, Raman scattering studies estimated a stress value of 2.6 GPa, which is much larger than the value of 0.75 GPa obtained from the XRD analyses. Raman spectroscopic studies also confirmed the grain-size-related disorder feature in the as-grown PbTiO3 thin films. Structural investigations implied the weakening of ferroelectricity in the heteroepitaxial ferroelectric thin films. Received: 1 April 1997/Accepted: 14 July 1997  相似文献   

17.
ZnO films were deposited on thermally oxidized SiO2/p-type Si (100) substrates and glass substrates by DC magnetron sputtering using a metal Zn target. Three types of samples were prepared with various O2/(Ar + O2) ratios (O2 partial pressure) of 20%, 50%, and 80%. The properties of these ZnO thin films were investigated using X-ray diffraction (XRD), optical transmittance, atomic force microscopy (AFM), and spectroscopic ellipsometry in the spectral region of 1.7–3.1 eV. The structural and optical properties of ZnO thin films were affected by O2 partial pressure. Relationships between crystallinity, the ZnO surface roughness layer, and the refractive index (n) were investigated with varying O2 partial pressure. It was shown that the spectroscopic ellipsometry extracted parameters well represented the ZnO thin film characteristics for different O2 partial pressures.  相似文献   

18.
BaTiO3 thin films with different thickness have been grown on Pt/Ti/SiO2/Si substrates by a modified sol-gel method. X-ray diffraction analyses show that the BaTiO3 thin films are polycrystalline. The crystalline quality of the films is improved with increasing thickness. The infrared optical properties of the BaTiO3 thin films have been investigated using an infrared spectroscopic ellipsometry in the wave number range of 800-4000 cm−1 (2.5-12.5 μm). By fitting the measured pseudodielectric functions with a three-phase model (Air/BaTiO3/Pt), and a derived classical dispersion relation for the thin films, the optical constants and thicknesses of the thin films have been simultaneously obtained. The refractive index of the BaTiO3 thin films increases and on the other hand, the extinction coefficient does not change with increasing thickness in the entirely measured wave number range. The dependence of the refractive index on the film thickness has been discussed in detail and was mainly due to both the crystalline quality of the films and packing density. Finally, the absorption coefficient was calculated in the infrared region for applications in the pyroelectric IR detectors.  相似文献   

19.
Phosphorous-doped and boron-doped amorphous Si thin films as well as amorphous SiO2/Si/ SiO2 sandwiched structures were prepared in a plasma enhanced chemical vapor deposition system. Then, the p–i–n structures containing nano-crystalline Si/ SiO2 sandwiched structures as the intrinsic layer were prepared in situ followed by thermal annealing. Electroluminescence spectra were measured at room temperature under forward bias, and it is found that the electroluminescence intensity is strongly influenced by the types of substrate. The turn-on voltages can be reduced to 3 V for samples prepared on heavily doped p-type Si (p+-Si) substrates and the corresponding electroluminescence intensity is more than two orders of magnitude stronger than that on lightly doped p-type Si (p-Si) and ITO glass substrates. The improvements of light emission can be ascribed to enhanced hole injection and the consequent recombination of electron–hole pairs in the luminescent nanocrystalline Si/ SiO2 system.  相似文献   

20.
Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号