首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Lu H  Liu X  Mao D  Gong Y  Wang G 《Optics letters》2011,36(16):3233-3235
An optical effect analogous to electromagnetically induced transparency (EIT) is observed in nanoscale plasmonic resonator systems. The system consists of a slot cavity as well as plasmonic bus and resonant waveguides, where the phase-matching condition of the resonant waveguide is tunable for the generation of an obvious EIT-like coupled resonator-induced transparency effect. A dynamic theory is utilized to exactly analyze the influence of physical parameters on transmission characteristics. The transparency effect induced by coupled resonance may have potential applications for nanoscale optical switching, nanolaser, and slow-light devices in highly integrated optical circuits.  相似文献   

2.
Graphene photonics has emerged as a promising platform for providing desirable optical functionality. However, graphene's monolayer‐scale thickness fundamentally restricts the available light matter interaction, posing a critical design challenge for integrated devices, particularly in wavelength regimes where graphene plasmonics is untenable. While several plasmonic designs have been proposed to enhance graphene light interaction in these regimes, they suffer from substantial insertion loss due to metal absorption. Here we report a non‐resonant metamaterial‐based waveguide platform to overcome the design bottleneck associated with graphene device. Such metamaterial structure enables low insertion loss even though metal is being utilized. By examining waveguide dispersion characteristics via closed‐form analysis, it is demonstrated that the metamaterial approach can provide optimized optical field that overlaps with the graphene monolayer. This enables graphene‐based integrated components with superior optical performance. Specifically, the metamaterial‐assisted graphene modulator can provide 5‐fold improvement in extinction ratio compared to Si nanowire, while reducing insertion loss by one order magnitude compared to plasmonic structures. Such a waveguide configuration thus allows one to maximize the optical potential that graphene holds in the telecom and visible regimes.  相似文献   

3.
In this work, we demonstrate surface plasmon resonance properties and field confinement under a strong interaction between a waveguide and graphene nanoribbons (GNRs), obtained by coupling with a nanocavity. The optical transmission of a waveguide–cavity–graphene structure is investigated by finite-difference time-domain simulations and coupled-mode theory. The resonant frequency and intensity of the GNR resonant modes can be precisely controlled by tuning the Fermi energy and carrier mobility of the graphene, respectively. Moreover, the refractive index of the cavity core, the susceptibility χ(3) and the intensity of incident light have little effect on the GNR resonant modes, but have good tunability to the cavity resonant mode. The cavity length also has good tunability to the resonant mode of cavity. A strong interaction between the GNR resonant modes and the cavity resonant mode appears at a cavity length of L1 = 350 nm. We also demonstrate the slow-light effect of this waveguide–cavity–graphene structure and an optical bistability effect in the plasmonic cavity mode by changing the intensity of the incident light. This waveguide–cavity–graphene structure can potentially be utilised to enhance optical confinement in graphene nano-integrated circuits for optical processing applications.  相似文献   

4.
盛世威  李康  孔繁敏  岳庆炀  庄华伟  赵佳 《物理学报》2015,64(10):108402-108402
提出了一种基于石墨烯纳米带的齿形表面等离激元波导滤波器, 并且用时域有限差分法研究了这种结构. 单个齿形的滤波器可以实现带阻滤波, 其滤波特性可以用基于散射矩阵的解析模型解释. 滤波器的透射谱特性可以通过调节齿的长度、宽度以及石墨烯的化学势来改变. 由于石墨烯的化学势可以用门电路来调节, 这种结构的滤波器可以在器件加工完成后灵活地调节其工作波长. 同时研究了多齿滤波器, 这种结构可以实现宽带滤波, 文中对具有不同齿数、周期的滤波器的透射谱进行了细致的研究. 研究结果对实现基于石墨烯的大规模集成光电子器件提供了重要的理论参考.  相似文献   

5.
We have designed and proposed the edge modes supported by graphene ribbons and the planar band-pass filter consisting of graphene ribbons coupled to a graphene ring resonator by using the finite-difference time-domain numerical method.Simulation results show that the edge modes improve the electromagnetic coupling between devices. This structure works as a novel, tunable mid-infrared band-pass filter. Our studies will benefit the fabrication of planar, ultra-compact nano-scale devices in the mid-infrared region. A power splitter consisting of two output ribbons that is useful in photonic integrated devices and circuits is also designed and simulated. These devices are useful for designing ultra-compact planar devices in photonic integrated circuits.  相似文献   

6.
光子晶体器件在高密度集成光通信中有广泛的应用,为解决光子晶体波导出射光场的空间控制,采用时域有限差分法分析光子晶体波导结构的缺陷传播特性,提出基于点缺陷优化波导结构,通过在波导出射口两侧加上点缺陷,出射光方向性有显著提高,实现三点光源干涉系统的光集束。模拟结果表明缺陷态越靠近能带结构中央,共振腔的耦合效率越高;相反,缺陷态越靠近能带结构边缘位置,则共振腔耦合效率越低,因此,选取禁带区域四分之一处对应的点缺陷,可以有效实现波导出射的光集束。  相似文献   

7.
程杨  姚佰承  吴宇  王泽高  龚元  饶云江 《物理学报》2013,62(23):237805-237805
石墨烯材料应用到各种光波导器件中正成为新一代光子器件的重要发展方向之一,目前基于石墨烯的光纤和集成光子器件研究越来越受到国内外的重视. 本文建立了一种由微纳光纤耦合光倏逝场,并在石墨烯薄膜中传输的模型. 通过有限元分析法,研究了光在这种石墨烯波导中传输光场的强度分布和相位特性,并通过实验进行了验证. 结果表明,沿着微纳光纤-石墨烯光波导传播的倏逝场的强度分布和相位均受石墨烯材料作用,石墨烯材料能有效聚集和导行波导中传输的高阶模,在单位传输长度上具有更密集的等相位面. 本文提出了一种利用微纳光纤耦合光倏逝场研究石墨烯相位响应特性的新方法,对基于石墨烯波导的新型调制器、滤波器、激光器和传感器等光子器件的设计和应用具有一定的参考意义. 关键词: 石墨烯平面光波导 倏逝波 光场强度 相位  相似文献   

8.
A novel kind of plasmonic wavelength demultiplexers (WDMs) based on two-dimensional metal–insulator–metal waveguides with side coupled nanocavities (SCNCs) is proposed and numerically investigated. The WDMs contain three waveguide output channels, each of which functions as a dual-stopband plasmonic filter. The demultiplexing wavelengths can be tuned by controlling the lengths and widths of SCNCs. The finite-difference time-domain results can be accurately analyzed by the resonant theory of nanocavity. Our structures have important potential applications for design of WDM systems in highly integrated optical circuits.  相似文献   

9.
A band-pass plasmonic filter based on periodic cascade resonant cavities is theoretically designed and analyzed. The transmission modes of surface plasmon polariton are well studied by the finite-difference time-domain method. The structure indicates the band-pass selection capability with several types of modes in the transmission spectra. The results show that the number of the transmission modes depends on the number of the cascade cavities period. These modes exhibit a shift with varying incident intensity involving Kerr medium in cascade cavities. The structure provides flexibility in design for pass-bands filter.  相似文献   

10.
In this paper, we show that a graphene quantum disk (GQD) can be generated on monolayer graphene via structural modification using the electron beam. The electronic structure and local optical responses of the GQD, supported on monolayer graphene, were probed with electron energy-loss spectrum imaging on an aberration-corrected scanning transmission electron microscope. We observe that for small GQD, ~1.3 nm in diameter, the electronic structure and optical response are governed by the dominating edge states, and are distinctly different from either monolayer graphene or double-layer graphene. Highly localized plasmon modes are generated at the GQD due to the confinement from the edge of the GQD in all directions. The highly localized optical response from GQDs could find use in designing nanoscale optoelectronic and plasmonic devices based on monolayer graphene.  相似文献   

11.
李伟军  向东 《发光学报》2013,34(12):1657-1661
运用时域有限差分(FDTD)方法数值研究了一种亚波长之字形金属-绝缘体-金属(MIM)等离子波导结构的传输属性。之字形波导在连续两个拐角可向外延伸出1~4个短切口。每个切口独立构成一个谐振腔,谐振波长近似与切口深度成线性正比,而与切口方向无关。当任意一个切口满足谐振条件时,该波导结构在对应波长的透射率均趋近于0。随着同深度切口数目的增加,禁带波长区域逐渐展宽,形成一个良好的宽带滤波器。  相似文献   

12.
Localized surface plasmonic resonance has attracted extensive attention since it allows for great enhancement of local field intensity on the nanoparticle surface. In this paper, we make a systematic study on the excitation of localized surface plasmons of a graphene coated dielectric particle. Theoretical results show that both the intensity and frequency of the plasmonic resonant peak can be tuned effectively through modifying the graphene layer. Furthermore, high order localized surface plasmons could be excited and tuned selectively by the Laguerre Gaussian beam, which is induced by the optical angular orbital momentum transfer through the mutual interaction between the particle and the helical wavefront.Moreover, the profiles of the multipolar localized surface plasmons are illustrated in detail. The study provides rich potential applications in the plasmonic devices and the wavefront engineering nano-optics.  相似文献   

13.
Zhu N  Mei T 《Optics letters》2012,37(10):1751-1753
In this letter, we propose and analyze an ultra-compact wavelength filter on silicon-based hybrid plasmonic waveguides, which confines light in a nanometeric silica dioxide layer between the silicon substrate and metal cap. The filter consists of a stub structure coupled to a straight waveguide. The three-dimensional finite-difference time-domain (FDTD) method is applied to calculate the spectral responses of such devices. Similar resonant behaviors are obtained since those devices are based on two-dimensional Metal-Insulator-Metal waveguide structure. Results also show that by adding stubs and tuning the distance between stubs can further improve the device's performance and shape the spectral response to some extent.  相似文献   

14.
We review some of the recent advances in the development of subwavelength plasmonic devices for ma- nipulating light at the nanoscale, drawing examples from our own work in metal-dielectric-metal (MDM) plasmonic waveguide devices. We introduce bends, splitters, and mode converters for MDM waveguides with no additional loss. We also demonstrate that optical gain provides a mechanism for on/off switch- ing in MDM plasmonie waveguides. Highly efficient compact couplers between dielectric waveguides and MDM waveguides are also introduced.  相似文献   

15.
Haowen Chen 《中国物理 B》2022,31(3):34211-034211
A plasmonic resonator system consisting of a metal—insulator—metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated by using the finite difference in time domain (FDTD) method, and the simulation results contain two resonant dips. The physical mechanism is studied by the multimode interference coupled mode theory (MICMT), and the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust the two dips, respectively. The refractive index sensor proposed in this paper, with a sensitivity of 1578 nm/RIU and figure of merit (FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.  相似文献   

16.
摘 要:光学微腔的高灵敏度主要源于其结构在时间和空间上对光场的局域增强作用和频率选择作用。其结构在垂直于波导方向上形成了高反射的边界,形成了一种回声腔,使得光在波导内来回反射,从而增强了波导内部的光场强度。当外界存在微小的压力波动时,它将引起波导内部的介电常数和压力场的变化,从而改变了谐振腔内的模式场分布和传输特性,据此可以实现对微小的压力波动进行高灵敏度检测。本文设计了一种高品质因子(Q)的光波导微槽式环形谐振腔超声传感器,完成器件制备并搭建了测试系统,依据倏逝波效应实现了超声探测。测试结果表明,该传感器的品质因子为1.38×107,在800 kHz ~1 MHz范围内响应平坦,在900 kHz的信噪比可以达到27 dB,灵敏度达到 -168 dB。本文设计的传感器可以为水声探测等领域的研究提供关键技术支持。  相似文献   

17.
郭福源  王明华 《光学技术》2007,33(6):921-925
在光波导模场分布高斯近似条件下,根据星形光波导耦合器的耦合特性,推导出了基于累加运算和卷积运算近似表达的阵列波导光栅梳状带通滤波器光谱响应效率的函数表达式。给出了阵列波导光栅梳状带通滤波器光谱响应效率曲线的半最大值全宽度和阵列波导光栅梳状带通滤波器的通道中心波长的光谱响应度与器件参数的关系。在输入信号光谱分布高斯近似条件下,给出了阵列波导光栅梳状带通滤波器信号通道传输效率的计算表达式和输入信号光谱宽度对阵列波导光栅梳状带通滤波器信号通道输出特性的影响。给出了物理意义明确的函数表达式,它们可为快速分析阵列波导光栅梳状带通滤波器的特性提供理论基础。  相似文献   

18.
The conversion from spatial propagating waves to surface plasmon polaritons (SPPs) has been well studied, and shown to be very efficient by using gradient‐index metasurfaces. However, feeding energies into and extracting signals from functional plasmonic devices or circuits through transmission lines require the efficient conversion between SPPs and guided waves, which has not been reported, to the best of our knowledge. In this paper, a smooth bridge between the conventional coplanar waveguide (CPW) with 50 Ω impedance and plasmonic waveguide (e.g., an ultrathin corrugated metallic strip) has been proposed in the microwave frequency, which converts the guided waves to spoof SPPs with high efficiency in broadband. A matching transition has been proposed and designed, which is constructed by gradient corrugations and flaring ground, to match both the momentum and impedance of CPW and the plasmonic waveguide. Simulated and measured results on the transmission coefficients and near‐filed distributions show excellent transmission efficiency from CPW to a plasmonic waveguide to CPW in a wide frequency band. The high‐efficiency and broadband conversion between SPPs and guided waves opens up a new avenue for advanced conventional plasmonic integrated functional devices and circuits.  相似文献   

19.
数值模拟二维间隙表面等离子波导传输特性   总被引:2,自引:2,他引:0  
李继军  汪国平 《光子学报》2014,40(12):1793-1798
利用表面等离子激元的新颖特性,设计了二维间隙表面等离子波导.以这种结构为基础通过变形和组合形成90°直角弯曲波导、T型光功率分配器和光开光,采用时域有限差分法研究了它们的传输特性.结果表明:不同于介质光波导的弯曲损耗来自于辐射泄漏,90°直角弯曲间隙表面等离子波导的能量损耗主要来自于金属中的欧姆热损耗.在间隙达到40 nm以上后,当直行段的长度适当时,弯曲段的透射率较相同长度的直波导的透射率要大.T型光功率分配器在两输出波导的间隙宽度比达到0.6及以上时,不同于传统介质波导的分光原则,能量主要沿等效折射率较小的输出臂流出.当两输入光的相位反相时,T型光开关处于输出截止的状态,当两输入光的相位同相时,T型光开关处于输出导通的状态.所有波导间隙均小于衍射极限,实现了超衍射极限传播,可用于未来了超大规模集成光路中.  相似文献   

20.
Hu B  Wang QJ  Zhang Y 《Optics letters》2012,37(11):1895-1897
One-way-propagating broadly tunable terahertz plasmonic waveguide at a subwavelength scale is proposed based on a metal-dielectric-semiconductor structure. Unlike other one-way plasmonic devices that are based on interference effects of surface plasmons, the proposed one-way device is based on nonreciprocal surface magneto plasmons under an external magnetic field. Theoretical and simulation results demonstrate that the one-way-propagating frequency band can be broadly tuned by the external magnetic fields. The proposed concept can be used to realize various high performance tunable plasmonic devices such as isolators, switches and splitters for ultracompact integrated plasmonic circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号