首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
Cu-rich precipitation is regarded as one of the main issues causing embrittlement of ferritic steels. In the present work, the Cu segregation at ∑ 5 { 012} symmetrical grain boundary (GB) in BCC iron is investigated by combining Metropolis Monte Carlo and molecular statics approaches. The segregation driven energies of Cu clusters decrease with increasing the distance from GB and also depend on the duster size. The length scales associated with Cu segregation at GB are determined. All these results indicate that Cu atoms prefer to segregate at ∑5 GB, which may account for the embrittlement of ferritic steels. The present results provide important knowledge to understand the detailed mechanisms of Cu segregation at GB and also the possible effects on mechanical properties of α-Fe.  相似文献   

2.
胡雪兰  赵若汐  罗阳  宋庆功 《中国物理 B》2017,26(2):23101-023101
First-principles calculations based on the density functional theory(DFT) and ultra-soft pseudopotential are employed to study the atomic configuration and charge density of impurity P in Ni Al Σ5 grain boundary(GB). The negative segregation energy of a P atom proves that a P atom can easily segregate in the Ni Al GB. The atomic configuration and formation energy of the P atom in the Ni Al GB demonstrate that the P atom tends to occupy an interstitial site or substitute a Al atom depending on the Ni/Al atoms ratio. The P atom is preferable to staying in the Ni-rich environment in the Ni Al GB forming P–Ni bonds. Both of the charge density and the deformation charge imply that a P atom is more likely to bond with Ni atoms rather than with Al atoms. The density of states further exhibits the interactions between P atom and Ni atom, and the orbital electrons of P, Ni and Al atoms all contribute to P–Ni bonds in the Ni Al GB. It is worth noting that the P–Ni covalent bonds might embrittle the Ni Al GB and weakens the plasticity of the Ni Al intermetallics.  相似文献   

3.
In this paper, we employ the first-principle total energy method to investigate the effect of P impurity on mechanical properties of NiAl grain boundary(GB). According to "energy", the segregation of P atom in NiAlΣ5 GB reduces the cleavage energy and embrittlement potential, demonstrating that P impurity embrittles NiAlΣ5 GB. The first-principle computational tensile test is conducted to determine the theoretical tensile strength of NiAlΣ5 GB. It is demonstrated that the maximum ideal tensile strength of NiAlΣ5 GB with P atom segregation is 144.5 GPa, which is lower than that of the pure NiAlΣ5 GB(164.7 GPa). It is indicated that the segregation of P weakens the theoretical strength of NiAlΣ5 GB.The analysis of atomic configuration shows that the GB fracture is caused by the interfacial bond breaking. Moreover, P is identified to weaken the interactions between Al–Al bonds and enhance Ni–Ni bonds.  相似文献   

4.
龚恒风  严岩  张显生  吕伟  刘彤  任啟森 《中国物理 B》2017,26(9):93104-093104
We investigated the effect of grain boundary structures on the trapping strength of He_N(N is the number of helium atoms) defects in the grain boundaries of nickel. The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane. The He_N defect is much more stable in nickel bulk than in the grain boundary plane. Besides, the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane. The binding strength between the grain boundary and the He _N defect increases with the defect size. Moreover, the binding strength of the He_N defect to the Σ3(12)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.  相似文献   

5.
The microstructure characteristic of the cold-rolled deformed nanocrystalline nickel metal is studied by transmission electron microscopy. The results show that there are step structures nearby the grain boundary (CB), and the contrast of stress field in front of the step corresponds to the step in the shape. It is indicated that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size becomes about lOOnm, the deformation can depend upon the moving of the boundary of the stack faults (SFs) which result from the partial dislocations emitted from CBs. However, when the size of SFs grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reaches a critical value which stops the gliding of the partial dislocations, the SFs will stop to grow up and leave a step structure behind.  相似文献   

6.
The effects of helium (He) on the sliding and mechanical properties of a vanadium (V) E5(310)/[001] grain boundary (GB) have been investigated using a first-principles method. It has been found that He was energetically favorable sitting at the GB region with a segregation energy of -0.27 eV, which was attributed to the special atomic configurations and charge density distributions of the GB. The maximal sliding energy barrier of the He-doped GB was calculated to be 1.73 J/m^2, 35% larger than that of the clean GB. This suggested that the presence of He would hinder the V GB mobility. Based on the thermodynamic criterion, the total energy calculations indicated that the embrittlement of V GB would be enhanced by He segregation.  相似文献   

7.
Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The interaction between grain boundary(GB)and dislocation is also examined in bicrystals and nano-polycrystals that both contain asymmetric and symmetric tilt GBs,with energy analysis being carried out to analyze these processes.During deformation simulations,we assume the volume of each simulation cell at every time step is coincident with that of the initial state just before deformation.Our simulation results show that the behaviors of symmetric and asymmetric GBs in bicrystals and nano-polycrystals differ from each other depending on tilt angle and inclination angle.A new dislocation emission mechanism of interest is observed in bicrystals which contain low angle symmetric tilt GBs.Low angle GB has a higher mobility relative to high angle GB in both bicrystalline and nano-polycrystalline structures,as does asymmetric GB to symmetric GB.The generation,motion,pileup and annihilation of dislocations,grain rotation and grain coalescence are observed,which is consistent with the simulation results obtained by molecular dynamics.These simulation results can provide strong guidelines for experimentation.  相似文献   

8.
The microscopic structures and the bonding properties of Y-doped and undoped(0118)/[0441]/180?(Σ37) grain boundaries in alumina are investigated by using ab initio method.The formation energy of grain boundary and the segregation energy of Y to grain boundary are acquired.Electronic structures,potential distributions,bond orders and effective charges of Y-doped and undoped Σ37 GB systems are calculated.Our results reveal that the higher strength Y-O bond than Al-O bond is ascribed to the hybridization of Y(4p,3d) with O(2s).Meanwhile,dopant Y also causes a change in potential distribution in the grain boundary region,thereby further aflecting the transport property of ceramic alumina.  相似文献   

9.
The present study carries out systematic thermodynamics analysis of Grain Boundary(GB)segregation and relaxation in NanoGrained(NG)polycrystalline alloys.GB segregation and relaxation is an internal process towards thermodynamic equilibrium,which occurs naturally in NG alloys without any applied loads,causes deformation and generates internal stresses.The analysis comprehensively investigates the multiple coupling effects among chemical concentrations and mechanical stresses in GBs and grains.A hybrid approach of eigenstress and eigenstrain is developed herein to solve the multiple coupling problem.The analysis results indicate that the GB stress and grain stress induced by GB segregation and relaxation can be extremely high in NG alloys,reaching the GPa level,which play an important role in the thermal stability of NG alloys,especially via the coupling terms between stress and concentration.The present theoretic analysis proposes a novel criterion of thermal stability for NG alloys,which is determined by the difference in molar free energy between a NG alloy and its reference single crystal with the same nominal chemical composition.If the difference at a temperature is negative or zero,the NG alloy is thermal stable at that temperature,otherwise unstable.  相似文献   

10.
陈征征  王崇愚 《中国物理》2006,15(3):604-609
The effect of Re segregation on the α-Fe ∑5 [001] (010) grain boundary (GB) is investigated by using a software called DMol and discrete variational method (DVM). Based on the Rice Wang model, the calculated segregation energy and defect formation energy show that Re is a strong cohesive enhancer. We also calculated the interatomic energy (IE) and bond order (BO) of several atomic pairs to investigate the mechanism of the cohesive effect of Re microscopically and locally. The results show that IEs of atomic pairs formed by those atoms which cross the plane of GB are strengthened due to the segregation of Re, while the BOs of the corresponding pairs are slightly decreased. This discrepancy demonstrates that IE which contains the Hamiltoniaa of interaction between atoms is a good quantity to describe the bonding strength. The analysis suggests that the electronic effect between atomic pair which comes directly from Hamiltonian is the key factor, The charge density is also presented, and the result indicates that the bonding strength between the Fe atoms on the GB is enhanced due to the segregation of Re, which is consistent with the analysis of IE.  相似文献   

11.
The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation.It includes the site preferences of H impurity in single crystals Ni and Ni 3 Al,the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation.The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the γ/γˊinterface and Ni3 Al and H impurity on the glide plane can obstruct the glide of misfit dislocation,which is beneficial to improving the mechanical properties of Ni based superalloys.  相似文献   

12.
谢红献  刘波  殷福星  于涛 《中国物理 B》2013,22(1):10204-010204
Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel. The simulation results suggest that the sliding of the {001}/{110} type and {110}/{111} type grain boundary can improve the impact toughness. Then, the mechanism of grain boundary sliding is studied and it is found that the motion of dislocations along the grain boundary is the underlying cause of the grain boundary sliding. Finally, the sliding of the grain boundary is analyzed from the standpoint of the energy. We conclude that the measures which can increase the quantity of the {001}/{110} type and {110}/{111} type grain boundary and elongate the free gliding distance of dislocations along these grain boundaries will improve the low-temperature impact toughness of the ultrafine grain structure steel.  相似文献   

13.
Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics(MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal,bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.  相似文献   

14.
于涛  谢红献  王崇愚 《中国物理 B》2012,21(2):26104-026104
The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and Ni3Al, the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation. The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the γ/γ' interface and Ni3Al and H impurity on the glide plane can obstruct the glide of misfit dislocation, which is beneficial to improving the mechanical properties of Ni based superalloys.  相似文献   

15.
We study nanometer copper thin films prepared by magnetron sputtering and treated with laser shock processing (LSP). We observe the formation of firstborn twin crystals and some complete twin crystals in the copper thin films. After LSP, scanning electron microscope (SEM) images show obvious plastic deformation of the copper grain on the film surface, dramatically increased grain size, and the appearance of a large number of twin crystals. Moreover, the width of the crystals is a few dozen nanometers, and the cross angle is more than or close to 90°.Many vacancy defects appear during the sliding of atomic plane, which leads to a faulty structure; however, no obvious dislocation is observed. These substructures play a significant role in improving the mechanical performance of nanometer copper thin films.  相似文献   

16.
This paper reports that an atomic scale study of [\bar {1}10] symmetrical tilt grain boundary (STGB) has been made with modified analytical embedded atom method (MAEAM) for 44 planes in three noble metals Au, Ag and Cu. For each metal, the energies of two crystals ideally joined together are unrealistically high due to very short distance between atoms near the grain boundary (GB) plane. A relative slide between grains in the GB plane results in a significant decrease in GB energy and a minimum value is obtained at specific translation distance. The minimum energy of Cu is much higher than that of Ag and Au, while the minimum energy of Ag is slightly higher than that of Au. For all the three metals, the three lowest energies correspond to identical (111), \mbox(113) and \mbox(331) boundary successively for two translations considered; from minimization of GB energy, these boundaries should be preferable in [\bar {1}10] STGB for noble metals. This is consistent with the experimental results. In addition, the minimum energy increases with increasing reciprocal planar coincidence density \Sigma, but decreases with increasing relative interplanar distance d /a.  相似文献   

17.
王飞  赖文生  李如松  何彬  黎素芬 《中国物理 B》2016,25(6):66804-066804
Interactions between vacancies and Σ3 prismatic screw-rotation grain boundary in α-Al_2O_3 are investigated by the first principles projector-augmented wave method.It turns out that the vacancy formation energy decreases with reducing the distance between vacancy and grain boundary(GB) plane and reaches the minimum on the GB plane(at the atomic layer next to the GB) for an O(Al) vacancy.The O vacancy located on the GB plane can attract other vacancies nearby to form an O–O di-vacancy while the Al vacancy cannot.Moreover,the O–O di-vacancy can further attract other O vacancies to form a zigzag O vacancy chain on the GB plane,which may have an influence on the diffusion behavior of small atoms such as H and He along the GB plane of α-Al_2O_3.  相似文献   

18.
Grain-boundary(GB) structures are commonly imaged as discrete atomic columns, yet the chemical modifications are gradual and extend into the adjacent lattices, notably the space charge, hence the two-dimensional defects may also be treated as continuum changes to extended interfacial structure. This review presents a spatially-resolved analysis by electron energy-loss spectroscopy of the GB chemical structures in a series of SrTiO_3 bicrystals and a ceramic, using analytical electron microscopy of the pre-Cs-correction era. It has identified and separated a transient layer at the model Σ5 grain-boundaries(GBs) with characteristic chemical bonding, extending the continuum interfacial approach to redefine the GB chemical structure. This GB layer has evolved under segregation of iron dopant, starting from subtle changes in local bonds until a clear transition into a distinctive GB chemistry with substantially increased titanium concentration confined within the GB layer in 3-unit cells, heavily strained, and with less strontium. Similar segregated GB layer turns into a titania-based amorphous film in SrTiO_3 ceramic, hence reaching a more stable chemical structure in equilibrium with the intergranular Ti_2O_3 glass also. Space charge was not found by acceptor doping in both the strained Σ5 and amorphous GBs in SrTiO_3 owing to the native transient nature of the GB layer that facilitates the transitions induced by Fe segregation into novel chemical structures subject to local and global equilibria. These GB transitions may add a new dimension into the structure–property relationship of the electronic materials.  相似文献   

19.
穆君伟  孙世成  江忠浩  连建设  蒋青 《中国物理 B》2013,22(3):37303-037303
Nanocrystalline Cu with average grain sizes ranging from ~ 24.4 to 131.3 nm were prepared by the electric brushplating technique.Nanoindentation tests were performed within a wide strain rate range,and the creep process of nanocrystalline Cu during the holding period and its relationship to dislocation and twin structures were examined.It was demonstrated that creep strain and creep strain rate are considerably significant for smaller grain sizes and higher loading strain rates,and are far higher than those predicted by the models of Cobble creep and grain boundary sliding.The analysis based on the calculations and experiments reveals that the significant creep deformation arises from the rapid absorption of high density dislocations stored in the loading regime.Our experiments imply that stored dislocations during loading are highly unstable and dislocation activity can proceed and lead to significant post-loading plasticity.  相似文献   

20.
Effects of Cr, Mo, and Nb on the ferritic stainless steel ]2(210) grain boundary and intragranularity are investigated using the first-principles principle. Different positions of solute atoms are considered. Structural stability is lowered by Cr doping and enhanced by Mo and Nb doping. A ranking on the effect of solute atoms enhancing the cohesive strength of the grain boundary, from the strongest to the weakest is Cr, Mo, and Nb. Cr clearly prefers to locate in the intragranular region of Fe rather than in the grain boundary, while Mo and Nb tend to segregate to the grain boundary. Solute Mo and Nb atoms possess a strong driving force for segregation to the grain boundary from the intragranular region, which increases the grain boundary embrittlement. For Mo- and Nb-doped systems, a remarkable quantity of electrons accumulate in the region close to Mo (Nb). Therefore, the bond strength may increase. With Cr, Mo, and Nb additions, an anti-parallel island is formed around the center of the grain boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号