首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The thermal degradation and crystallisation behaviours of polyamide12/isotactic polypropylene (PA12/PP) blends were studied. Effects of blend ratio and compatibiliser concentration on the thermal degradation properties of the blends were analysed. The activation energy for degradation in compatibilised and uncompatibilised blends computed using Horowitz-Metzger equation was reported. The blend ratio as well as the presence of compatibiliser has significant effect on the thermal stability of the blends. Phase morphology was found to be one of the decisive factors that affected the thermal stability of both uncompatibilised and compatibilised blends. Melting and crystallisation behaviours of the blends in the presence and absence of compatibiliser were evaluated. It was observed that blending has no significant effect on the melting and crystallisation properties of PA12 and PP. Compatibilisation of 70/30 and 50/50 PA12/PP blends didn't affect the crystallisation and melting behaviours of PA12 and PP even though some discrepancies were observed.  相似文献   

2.
The effects of maleated thermoplastic elastomer (TPEg) on morphological development of polypropylene (PP)/polyamide 6 (PA6) blends with a fixed PA6 content (30 wt %) were investigated. For purpose of comparison, nonmaleated thermoplastic elastomer (TPE) was also added to the above binary blends. A comparative study of FTIR spectroscopy in above both ternary blends confirmed the formation of in situ graft copolymer in the PP/PA6/TPEg blend. Dynamic mechanical analysis (DMA) indicated that un‐like TPE, the incorporation of TPEg remarkably affected both intensity and position of loss peaks of blend components. Scanning electron microscopy (SEM) demonstrated that PP/PA6/TPE blends still exhibited poor interfacial adhesion between the dispersed phase and matrix. However, the use of TPEg induced a finer dispersion and promoted interfacial adhesion. Transmission electron microscopy (TEM) for PP/PA6/TPEg blends showed that a core‐shell structure consisting of PA6 particles encapsulated by an interlayer was formed in PP matrix. With the concentration of TPEg increasing, the dispersed core‐shell particles morphology was found to transform from discrete acorn‐type particles to agglomerate with increasing degree of encapsulation. The modified Harkin's equation was applied to illustrate the evolution of morphology with TPEg concentration. “Droplet‐sandwiched experiments” further confirmed the encapsulation morphology in PP/PA6/TPEg blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1050–1061, 2006  相似文献   

3.
马来酸酐接枝热塑性弹性体在PP/PA6共混物中的作用   总被引:10,自引:0,他引:10  
研究了马来酸酐接枝热塑性弹性体 (TPEg )作为增容剂对聚丙烯 (PP) 尼龙 6 (PA6 )共混体系的相容性、相态以及物理力学性能的影响 .研究结果表明TPEg的加入大大改善了PP PA6共混体系的相容性 ,且随TPEg含量的增大分散相粒径明显降低 ,共混物的韧性以及延展性大大提高 ,同时拉伸强度及模量仍保持较好的水平 .TPEg增容的PP PA6共混物的非等温结晶行为的研究表明 ,共混物中PP和PA6的结晶行为不同于各自纯的聚合物 ,PA6作为成核剂使PP的结晶温度提高 ;而PA6由于TPEg的加入 ,出现分级结晶现象 ,一级结晶温度略低于纯PA6的结晶温度 ,且随TPEg含量增大结晶受阻 ,二级结晶温度与PP的接近 .由于PP、PA 6以及TPEg之间存在较强的相互作用 ,三元共混物中PP及PA6的玻璃化转变温度分别较其纯聚合物升高 .基于上述结果 ,提出了本共混体系的结构模型  相似文献   

4.
通过挤出和注射成型制备了滑石粉(Talc)填充的尼龙6/聚丙烯/马来酸酐接枝聚丙烯(PA6/PP/MAPP)合金, 研究了Talc和混炼顺序(一步法和PA6母料法)对合金相形态和力学性能的影响. 场发射扫描电镜(FESEM)分析结果表明, 添加Talc后注射样条中心部分的PP相由球状转变为沿流动方向取向的有分支的条状结构, 且用PA6母料法制样比用一步法制样的相形态更为精细. 溶解PA6相后对PP相进行热重分析(TGA), 确定了Talc在PA6相和PP相中的分布比例, Talc选择性分布于PA6相中. PA6母料法中Talc的分散好于一步法. 研究了材料的拉伸、 弯曲、 冲击、 热变形温度和动态力学性能, Talc的添加能够明显提高材料的刚性, 且母料法样品的性能优于一步法样品.  相似文献   

5.
A series of polyamide 6/polypropylene (PA6/PP) blends and nanocomposites containing 4 wt% of organophilic modified montmorillonite (MMT) were designed and prepared by melt compounding followed by injection molding. Maleic anhydride polyethylene octene elastomer (POEgMAH) was used as impact modifier as well as compatibilizer in the blend system. Three weight ratios of PA6/PP blends were prepared i.e. 80:20, 70:30, and 60:40. The mechanical properties of PA6/PP blends and nanocomposite were studied through flexural and impact properties. Scanning electron microscopy (SEM) was used to study the microstructure. The incorporation of 10 wt% POEgMAH into PA6/PP blends significantly increased the toughness with a corresponding reduction in strength and stiffness. However, on further addition of 4 wt% organoclay, the strength and modulus increased but with a sacrifice in impact strength. It was also found that the mechanical properties are a function of blend ratio with 70:30 PA6/PP having the highest impact strength, both for blends and nanocomposites. The morphological study revealed that within the blend ratio studied, the higher the PA6 content, the finer were the POEgMAH particles.  相似文献   

6.
Blends of polyamide12 (PA12) and isotactic polypropylene (PP) were prepared by melt mixing, in an internal mixer, in the presence and absence of compatibiliser. The compatibiliser used was maleic anhydride grafted PP (PP-g-MA). The dynamic mechanical properties of the blends with and without compatibiliser were studied. Although compatibilization shifted the glass transition temperatures (Tg's) of component polymers only marginally, it significantly enhanced the storage modulus of the blends. The storage moduli of the uncompatibilised blends were compared with those predicted by theoretical models. Correlation between the dynamic mechanical properties of both compatibilised and uncompatibilised blends and their phase morphology was made.  相似文献   

7.
This article reports on a new phenomenon: The presence of a compatibilizer accelerates the melting/plastification of an immiscible polymer blend during melt blending. The increase in the rate of melting as a result of the addition of a compatibilizer is believed to be one of the important factors responsible for the fact that the morphology of compatibilized blends develops much faster than that of their uncompatibilized counterparts. To substantiate the above statement, blends based on polypropylene (PP) and polyamide 6 (PA6) were used as model systems. The compatibilizer was a graft copolymer (PP-g-PA6) with PP as the backbone and PA6 as grafts. Its presence in a PP/PA6 blend accelerated the rate of melting of the PA6. This effect was observed only when the compatibilizer itself was molten and migrated to the interfacial layer between the PA6 and PP phases. It is likely that the presence of the compatibilizer increased the chain entanglements at the PP and PA6 interface and consequently reduced the thermal resistance of the interfacial layer. Detailed mechanisms are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3368–3384, 1999  相似文献   

8.
Thermal stability of ester-thermoplastic polyurethane (TPU)/polypropylene (PP) and ether-TPU/PP blends was evaluated by thermogravimetric studies. Thermal studies were made as a function of blend ratio. Effects of compatibilization using MA-g-PP and nanoclay addition on thermal stability were evaluated. Mass loss at 400 °C was found to decrease with increasing PP content were determined. Finally the compatibility and crystallization behavior of the blends were studied by differential scanning calorimetry. Compared to the ether-TPU blend nanocomposites, the ester-TPU blends showed better compatibility and thermal stability.  相似文献   

9.
The phase structure and clay dispersion in polyamide‐6(PA6)/polypropylene(PP)/organoclay (70/30/4) systems with and without an additional 5 parts of maleated polypropylene (MAH‐g‐PP) as a compatibilizer were studied with atomic force microscopy (AFM). AFM scans were taken from the polished surface of specimens that were chemically and physically etched with formic acid and argon ion bombardment, respectively. The latter technique proved to be very sensitive to the blend morphology, as PP was far more resistant to ion bombardment than PA6. In the absence of the MAH‐g‐PP compatibilizer, the organoclay is located in the PA6 phase; this finding is in line with transmission electron microscopic results. Further, the PP is coarsely dispersed in PA6 and the adhesion between PA6 and PP is poor. The addition of MAH‐g‐PP resulted in a markedly finer PP dispersion and good interfacial bonding between PA6 and PP. In this blend, the organoclay was likely dispersed in the PA6‐grafted PP phase. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43:1198–1204, 2005  相似文献   

10.
Extrusion of immiscible polymer biphasic blends to form in situ microfibers of the minor component in the matrix of the major component is an elegant way to create composites with new properties. The process was used to obtain thermoplastic polyurethane elastomers modified with polypropylene microfibers. The effect of phase interaction on blend morphology and properties was studied by running a series of blends with and without a maleated polypropylene compatibilizer. Six different blends were prepared: three with compatibilizer and three without the compatibilizer. All blends contained polypropylene as a minor component (80/20; 90/10 and 95/5). Extrusion spinning of polyurethane/polypropylene blends with and without compatibilizer resulted in polyurethane fibers modified with highly-oriented polypropylene microfibrils at all component ratios. Increasing polypropylene concentration in the thermoplastic polyurethane matrix increased hardness and modulus, but did not affect tensile strength and lowered elastic recovery.  相似文献   

11.
Crystallization behavior of polypropylene/polycarbonate blends   总被引:2,自引:0,他引:2  
Crystallization behavior and morphology of polypropylene (PP)/polycarbonate (PC) blends have been studied by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In the study of non-isothermal crystallization of the blends, the phenomenon of multiple crystallization peaks of PP/PC blends was related to the blend morphology in which PP was the dispersed phase as small droplets in the PC matrix. The phenomenon of a single crystallization peak of the PP/PC blends was related to the blend morphology in which PP was a continuous phase; in that case the crystallization peak temperatures of the blends were higher than that of the PP. The isothermal crystallization kinetics of the PP and PP/PC (80/20) blend were described by the Avrami equation. The results showed that the Avrami exponent of the PP/PC (80/20) blend was higher than that of the PP, and the crystallization rate of the PP/PC (80/20) blend was faster than that of the PP. The crystallization rate of the PP and PP/PC (80/20) blend were calculated according to the Hoffmann theory. Both the PP and PP/PC (80/20) blend had maximum crystallization rates. The temperature at the maximum crystallization rate for the PP/PC (80/20) blend was higher than that of the PP.  相似文献   

12.
多组分单体接枝聚丙烯/尼龙6反应共混物结晶行为研究   总被引:10,自引:0,他引:10  
用多组分熔融接枝的方法将甲基丙烯酸缩水甘油酯 (GMA)和苯乙烯 (St)共同接枝到聚丙烯 (PP)上 ,制得具有较高GMA接枝率的多单体接枝聚丙烯 ,PP g (GMA co St) .将PP g (GMA co St)与尼龙 6 (PA6 )进行共混 ,利用扫描电镜 (SEM) ,差示扫描量热计 (DSC)和广角X射线衍射 (WAXD)对共混物的形态和结晶进行了研究 .在共混过程中 ,PP g (GMA co St)与PA6反应原位生成了PP g PA6 ,有效改善了共混物的相容性 ,分散相尺寸明显减小 .在PP g (GMA co St) PA6为 3 7的体系中 ,PP g (GMA co St)出现分级结晶现象 ,其在较低温度下的结晶属于均相成核结晶 .在PP g (GMA co St) PA6为 7 3的体系中 ,由于PA6相分散细微 ,在通常结晶温度下不结晶 ,而是在低温下均相成核与PP g (GMA co St)同时结晶 .WAXD证实体系中接枝PP ,PA6为分别结晶 ,无共晶或新的晶型产生  相似文献   

13.
PP/PP-g-MAH/PA6共混物结构与可纺性研究   总被引:3,自引:0,他引:3  
运用DSC、SEM、纺丝成形等手段研究了增容剂聚丙烯接枝马来酸酐 (PP g MAH)对聚丙烯 聚酰胺 6(PP PA6 )共混物结构和性能的影响 .结果表明 ,共混物呈典型海岛型两相结构 ;增容剂PP g MAH与PA6之间的在位反应改善了PP PA6共混体系的相容性 ,使共混物中PA6的热结晶峰消失 ,PP的结晶生长速率和成核速率降低 ,可纺性提高  相似文献   

14.
超细聚酰胺6粒子增韧聚丙烯体系的研究   总被引:7,自引:0,他引:7  
陈哲  王琪  徐僖 《高分子学报》2001,37(1):13-16
采用磨盘形力化学反应器室温下制备了聚丙烯 (PP) /聚酰胺 6 (PA6 )超细粉体 ,研究了其粒度、粒度分布及PA6超细粒子填充对PP力学性能的影响 .结果表明 ,磨盘形力化学反应器可有效实现PP/PA6的粉碎 ,所得粉体平均粒径达微米级 ,初级粒子尺寸甚至可达纳米级 ,粒度分布呈双峰分布状态 .在PA6和PP熔点之间的温度下加工可制得PA6超细粒于填充的PP/PA6共混体系 ,其力学性能明显好于PP/PA6简单共混体系 ,30 %PA6用量下 ,拉伸强度由 2 3 .2MPa提高至 2 9 3MPa ,Izod缺口冲击强度由 4.6 2kJ/m2 提高到6 .34kJ/m2 .形貌分析结果表明 ,由于基本保持了PA6超细粉体的原始尺寸 ,填充体系中PA6相区尺寸小、分布均匀 ,与使用增容剂得到的相区结构类似 .  相似文献   

15.
Raman spectroscopy including mapping technique appears as a powerful technique for the characterization of polymer blends like thermoplastic elastomers (TPEs) and thermoplastic vulcanizates (TPVs). The Raman spectra of polymers blends such as natural rubber/polypropylene (NR/PP) and 65% hydrogenated natural rubber/polypropylene (65%HNR/PP) were identified and the phase distribution was determined. The study was driven for the same type of blends in TPEs state and TPVs state obtained after to 2 different processes, either peroxide cure or sulfur cure. The morphology of TPEs and TPVs obtained by Raman spectroscopy were compared and confirmed using scanning electronic microscopy.Raman mapping shows that the phase morphology of NR/PP, 65%HNR/PP, were characterized as continuous rubber phase morphology of the thermoplastic elastomers (TPEs) and a fine dispersion of cross-linked rubber phase in a continuous matrix of the thermoplastic vulcanizates (TPVs). Raman spectroscopy is demonstrated to be a reference to determine the content ratio of each component in the TPVs. Moreover, Raman mapping could be used to calculate the phase size of cross-linked rubber phase dispersed in the thermoplastic vulcanizates (TPVs).  相似文献   

16.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were compatibilized with maleic anhydride-grafted ethylene-propylene rubber (EPRgMA). The blends were melt compounded in twin screw extruder followed by injection molding. The mechanical properties of PA6/PP nanocomposites were studied by tensile and flexural tests. The microstructure of the nanocomposite were assessed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The dynamic mechanical properties of the PA6/PP blend-based nanocomposites were analyzed by using a dynamic mechanical thermal analyzer (DMTA). The rheological properties were conducted from plate/plate rheometry via dynamic frequency sweep scans. The melt viscosity in a high shear rate region was performed by using a capillary rheometer. The strength and stiffness of the PA6/PP-based nanocomposites were improved significantly with the incorporation of EPRgMA. Adding EPRgMA to the PA6/PP blends resulted in a finer dispersion of the PP phase. TEM and XRD results revealed that the organoclay was dispersed more homogeneously in the presence of EPRgMA, however, mostly in the PA6 phase of the blends. DMTA results showed that EPRgMA worked as an effective compatibilizer. The storage (G′) and loss moduli (G″) assessed by plate/plate rheometry of PA6/PP blends increased with the incorporation of EPRgMA and organoclay. Furthermore, the apparent shear viscosity of the PA6/PP blend increased significantly for the EPRgMA compatibilized PA6/PP/organoclay nanocomposite. This was traced to the formation of an interphase between PA6 and PP (via PA6-g-EPR) and effective intercalation/exfoliation of the organoclay.  相似文献   

17.
Nylon copolymer (PA6, 66) and ethylene propylene diene (EPDM) blends with and without compatibilizer were prepared by melt mixing using Brabender Plasticorder. The thermal stability of nylon copolymer (PA6, 66)/ethylene propylene diene rubber (EPDM) blends was studied using thermogravimetric analysis (TGA). The morphology of the blends was investigated using scanning electron microscopy (SEM). In this work, the effects of blend ratio and compatibilisation on thermal stability and crystallinity were investigated. The incorporation of EPDM rubber was found to improve the thermal stability of nylon copolymer. The kinetic parameters of the degradation process were also studied. A good correlation was observed between the thermal properties and phase morphology of the blends. By applying Coats and Redfern method, the activation energies of various blends were derived from the Thermogravimetric curves. The compatibilization of the blends using EPM-g-MA has increased the degradation temperature and decreased the weight loss. EPM-g-MA is an effective compatibilizer as it increases the decomposition temperature and thermal stability of the blends. Crystallinity of various systems has been studied using wide angle X-ray scattering (WAXS). The addition of EPDM decreases the crystallinity of the blend systems.  相似文献   

18.
This study investigates the role played by two different interface agents on the basis of atactic polypropylene in the continuous/disperse phase polypropylene/polyamide‐6 (PP/PA6) system. The two agents used were obtained at the authors' laboratories from an atactic polypropylene byproduct derived from industrial polymerization reactors and consist of two grafted polymers containing either succinic anhydride (a‐PP‐SA) or both succinyl‐fluorescein and succinic anhydride grafted groups (a‐PP‐SF/SA). The role of these grafted polymers as compatibilizers in PP/PA6 polymer blends has been confirmed in previous investigations on the basis of their macroscopic behavior. This work investigates the thermal study of these blends where polypropylene acts as the polymer matrix and polyamide as the dispersed phase. Under isothermal conditions, thermal analysis agrees with the changes in the overall system behavior caused by the presence of the interface agents. These aspects were confirmed by polarized light microscopy that showed the morphology of the blends before and after modification with a‐PP‐SA or a‐PP‐SF/SA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1307–1315, 2002  相似文献   

19.
A new method was used to prepare thermoplastic elastomers based on polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr) with improved mechanical properties. An epoxy resin (EP) was used as a compatibilizing agent. The effect of EP on mechanical properties, swelling percentage and morphological characteristics of the blends was investigated with different blend compositions. The results showed that the incorporation of EP has improved the tensile strength, Young's modulus and elongation at break of PP/NBRr-EP blends compared with PP/NBRr blends. The enhancement of tensile properties of PP/NBRr-EP blends is due to the better adhesion between the two phases with the incorporation of EP. This is quite evident by scanning electron microscopy of tensile fractured surfaces. PP/NBRr-EP blend exhibits lower stabilization torque and swelling percentage than PP/NBRr blends. The lower stabilization torque is an indication of better processing characteristics.  相似文献   

20.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organically modified clay (organoclay) toughened with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA) were prepared by melt compounding using co-rotating twin-screw extruder followed by injection molding. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the structure of the nanocomposites. The mechanical properties of the nanocomposites were determined by tensile, flexural, and notched Izod impact tests. The single edge notch three point bending test was used to evaluate the fracture toughness of SEBS-g-MA toughened PA6/PP nanocomposites. Thermal properties were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). XRD and TEM results indicated the formation of the exfoliated structure for the PA6/PP/organoclay nanocomposites with and without SEBS-g-MA. With the exception of stiffness and strength, the addition of SEBS-g-MA into the PA6/PP/organoclay nanocomposites increased ductility, impact strength and fracture toughness. The elongation at break and fracture toughness of PA6/PP blends and nanocomposites were increased with increasing the testing speed, whereas tensile strength was decreased. The increase in ductility and fracture toughness at high testing speed could be attributed to the thermal blunting mechanism in front of crack tip. DSC results revealed that the presence of SEBS-g-MA had negligible effect on the melting and crystallization behavior of the PA6/PP/organoclay nanocomposites. TGA results showed that the incorporation of SEBS-g-MA increased the thermal stability of the nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号