首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用质谱在线技术,对CuO-ZnO-ZrO2催化甲醇水蒸汽重整(SRM)反应进行程序升温脱附(TPD)和程序升温表面反应(TPSR)研究.结果表明:在反应态催化剂表面,甲醇以分子吸附态形式存在,甲醇水蒸汽重整反应经历甲酸根中间物种.分别用CuO、CuO-ZnO、CuO-ZnO-ZrO2作催化剂,甲醇在气流中的摩尔分数分别高于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO2和H2;而甲醇在气流中的摩尔分数分别低于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO、CO2和H2.  相似文献   

2.
将一种新型的CuMn催化剂用于由合成气合成甲酸甲酯和甲醇,该催化剂表现出良好的反应活性和甲酸甲酯选择性。考察了反应温度、合成气压力及催化剂制备方法等对合成甲酸甲酯和甲醇的反应活性及选择性的影响。在反应条件下,产物收率最高达60.10g/(L·h),产物甲酸甲酯的选择性很高。用BET、XRD及XPSAuger等测试方法对催化剂的比表面、晶相组成以及铜、锰在催化剂中的价态进行了表征,并探讨了催化剂失活的原因。  相似文献   

3.
Catalytic methanol synthesis is one of the major processes in the chemical industry and may grow in importance, as methanol produced from CO2 and sustainably derived H2 are envisioned to play an important role as energy carriers in a future low‐CO2‐emission society. However, despite the widespread use, the reaction mechanism and the nature of the active sites are not fully understood. Here we report that methanol synthesis at commercially applied conditions using the industrial Cu/ZnO/Al2O3 catalyst is dominated by a methanol‐assisted autocatalytic reaction mechanism. We propose that the presence of methanol enables the hydrogenation of surface formate via methyl formate. Autocatalytic acceleration of the reaction is also observed for Cu supported on SiO2 although with low absolute activity, but not for Cu/Al2O3 catalysts. The results illustrate an important example of autocatalysis in heterogeneous catalysis and pave the way for further understanding, improvements, and process optimization of industrial methanol synthesis.  相似文献   

4.
A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high catalytic promoting effect on the synthesis of methanol from CO hydrogenation. At 443 K and 5 MPa, the synthesis of methanol could process high effectively, resulting from the synergic catalysis of Cu/ZnO solid catalyst and 2-alcohol solvent catalyst. The primary results showed that when 2-butanol was used as reaction solvent, the one-pass average yield and the selectivity of methanol, in 40 h continuous reaction at temperature as low as 443 K and 5 MPa, were high up to 46.51% and 98.94% respectively. The catalytic activity was stable and the reaction temperature was 80 K or so lower than that in current industry synthesis process. This new process hopefully will become a practical method for methanol synthesis at low temperature.  相似文献   

5.
A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high catalytic promoting effect on the synthesis of methanol from CO hydrogenation. At 443 K and 5 MPa, the synthesis of methanol could process high effectively, resulting from the synergic catalysis of Cu/ZnO solid catalyst and 2-alcohol solvent catalyst. The primary results showed that when 2-butanol was used as reaction solvent, the one-pass average yield and the selectivity of methanol, in 40 h continuous reaction at temperature as low as 443 K and 5 MPa, were high up to 46.51% and 98.94% respectively. The catalytic activity was stable and the reaction temperature was 80 K or so lower than that in current industry synthesis process. This new process hopefully will become a practical method for methanol synthesis at low temperature.  相似文献   

6.
Catalytic methanol synthesis is one of the major processes in the chemical industry and may grow in importance, as methanol produced from CO2 and sustainably derived H2 are envisioned to play an important role as energy carriers in a future low-CO2-emission society. However, despite the widespread use, the reaction mechanism and the nature of the active sites are not fully understood. Here we report that methanol synthesis at commercially applied conditions using the industrial Cu/ZnO/Al2O3 catalyst is dominated by a methanol-assisted autocatalytic reaction mechanism. We propose that the presence of methanol enables the hydrogenation of surface formate via methyl formate. Autocatalytic acceleration of the reaction is also observed for Cu supported on SiO2 although with low absolute activity, but not for Cu/Al2O3 catalysts. The results illustrate an important example of autocatalysis in heterogeneous catalysis and pave the way for further understanding, improvements, and process optimization of industrial methanol synthesis.  相似文献   

7.
Alkylation and methylation reactions are important reactions in petrochemical production and form part of the reaction mechanism of many hydrocarbon transformation processes. Here, a new reaction mechanism is explored for the zeolite catalyzed methylation of arenes using quantum chemical calculations. It is proposed that the most substituted methylbenzenes, which will reside predominantly on the protonated form when adsorbed in a zeolite, can react directly with a neutral methanol molecule in the vicinity, thereby initiating the methylation reaction without having to return a proton to the zeolite surface. The calculated barriers are quite low, indicating that the suggested mechanism is plausible. This route might explain how the most substituted methylbenzenes can function as efficient reaction intermediates in the methanol to hydrocarbons reaction without themselves acting as catalyst poisons as a consequence of their high proton affinities.  相似文献   

8.
The adsorption of methanol and its subsequent transformation to form dimethyl ether (DME) on a commercial grade eta-alumina catalyst has been investigated using a combination of mass selective temperature-programmed desorption (TPD) and diffuse reflectance infrared spectroscopy (DRIFTS). The infrared spectrum of a saturated overlayer of methanol on eta-alumina shows the surface to be comprised of associatively adsorbed methanol and chemisorbed methoxy species. TPD shows methanol and DME to desorb with respective maxima at 380 and 480 K, with desorption detectable for both molecules up to ca. 700 K. At 673 K, infrared spectroscopy reveals the formation of a formate species; the spectral line width of the antisymmetric C-O stretch indicates the adoption of a high symmetry adsorbed state. Conventional TPD using a tubular reactor, combined with mass spectrometric analysis of the gas stream exiting the IR cell, indicate hydrogen and methane evolution to be associated with formation of the surface formate group and CO evolution with its decomposition. A reaction scheme is proposed for the generation and decomposition of this important reaction intermediate. The overall processes involved in (i) the adsorption/desorption of methanol, (ii) the transformation of methanol to DME, and (iii) the formation and decomposition of formate species are discussed within the context of a recently developed four-site model for the Lewis acidity of eta-alumina.  相似文献   

9.
CuO-ZnO-ZrO2催化甲醇水蒸汽重整反应机理和中间态   总被引:1,自引:0,他引:1  
应用质谱在线技术,对CuO-ZnO-ZrO2催化甲醇水蒸汽重整(SRM)反应进行程序升温脱附(TPD)和程序升温表面反应(TPSR)研究.结果表明:在反应态催化剂表面,甲醇以分子吸附态形式存在,甲醇水蒸汽重整反应经历甲酸根中间物种.分别用CuO、CuO-ZnO、CuO-ZnO-ZrO2作催化剂,甲醇在气流中的摩尔分数分别高于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO2和H2;而甲醇在气流中的摩尔分数分别低于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO、CO2和H2.  相似文献   

10.
Cu-Cr and Cu-Cr-Zr catalysts for the low temperature methanol synthesis slurry phase, with the surface area of 77.9 and 113.2 m2/g respectively, were prepared by the co precipitation approach. The activity and selectivity of these catalysts were evaluated in a stainless steel autoclave at 5.5 MPa and at different temperatures of 383 and 423 K separately. It was found that the activity of Cu-Cr-Zr catalyst was obviously higher than that of Cu-Cr catalyst, whereas the methanol selectivity of Cu-Cr-Zr catalyst was a little lower. The concentration of sodium compounds in the solution after reaction was also measured. The results showed that the concentration of sodium formate after reaction is much lower than that before reaction, which is quite different from the observations from the Cu-Cr catalyst previously. This implies that the conversion of sodium methoxide to sodium formate has been completely suppressed in the presence of zirconia in Cu-Cr-Zr catalyst. This finding is more beneficial to improve the performance of Cu-Cr catalyst and to increase the life of catalyst system as well.  相似文献   

11.
在低温和浆态反应条件下,于同一个反应器中考察了由合成气一体化合成甲醇和甲酸甲酯的反应。结果表明,由碱金属醇化物和CuCl组成的混合催化体系具有甲醇合成活性,在比较温和的条件下(363~403K, 3~6 MPa)进行合成反应时,甲醇的空时收率可达到208 g·L~(-1)·h(-1)(363 K, 5.0Mpa)和43.8g·L~(-1).h~(-1)(添加氢化物助剂)。甲醇的选择性与反应温度有关。一体化合成反应与分步反应有较大差异。反应历程可能为甲醇首先均相催化羰化为甲酸甲酯,然后甲酸甲酯再多相催化氢解为甲醇。  相似文献   

12.
混合金属氧化物固载杂多酸的制备及催化性能   总被引:3,自引:0,他引:3  
杂多酸是一类含氧桥的多核无机高分子化合物,由于其独特的笼型结构而具有许多优异的性能,尤其是作为一种新型的多功能催化剂越来越受到人们的关注。因此,近年来人们一直致力于研究新型固载杂多酸催化剂。本文介绍了钛钨混合金属氧化物固载杂多酸催化剂HPA/TiO2-WO3的制备,及催化合成甲酸环己酯的方法,此法具有反应时间短、催化剂价廉易得、工艺简单、酯产率较高等优点。  相似文献   

13.
Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO_X catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction intermediate in this reaction, creating a different reaction pathway. The formation of crystalline phases and characteristic morphology of the co-precipitated precursors during the co-precipitation step were important factors in obtaining an efficient Cu/ZnO catalyst with a high dispersion of metallic copper,which is one of the main active sites for methanol synthesis. The acidic properties of the Cu/ZnO catalyst were also revealed as important factors, since alcohol esterification is considered the rate-limiting step in alcohol-assisted low-temperature methanol synthesis. As a consequence, bifunctionality of the Cu/ZnO catalyst such as metallic copper and acidic properties was required for this reaction. In this respect, the copper content(X) strongly affected the catalytic activity of the Cu/ZnO_X catalysts, and accordingly, the Cu/ZnO_0.5 catalyst with a high copper dispersion and sufficient acid sites exhibited the best catalytic performance in this reaction.  相似文献   

14.
Methanol was co‐adsorbed with oxygen on Ru(0001) under conditions approaching those of real catalysts: at room temperature and at relatively high pressures and exposures, together with a comparative analysis of flat and defective surfaces. To clarify reaction routes, parallel exposures to formaldehyde and oxygen have also been analyzed. It is found that for both mixtures of gases, a new reaction path is activated on defective surfaces, in which methanol is oxidized to formate. Furthermore, at variance with pure methanol adsorption, apart from CO, various intermediates are observed in both flat and defective surfaces. On flat surfaces, formaldehyde and formyl are recognized whereas on defective ones methoxy and formate are detected. A model involving steering effects is presented, which accounts for the activity of surface defects towards the synthesis of formate.  相似文献   

15.
以溶胶固定法制备了Au-Pd/SiO2催化剂,考察了催化剂焙烧温度对甲醇选择氧化制甲酸甲酯反应性能的影响。在200~500℃,400℃焙烧的Au-Pd/SiO2具有最好的低温催化性能,在室温下就有活性,反应温度为100℃时甲醇转化率为25.3%,甲酸甲酯的选择性为100%。采用BET、XRD、UV-vis DRS、XPS、TEM和DRIFTS技术对催化剂进行表征,结果表明,催化剂中活性组分Au和Pd的高分散性,合适的Au和Pd粒径,Au-Pd合金的形成以及Au和Pd之间的强相互作用力,有利于甲醇氧化为甲酸甲酯反应的进行。初步推测出了甲醇在Au-Pd/SiO2上氧化为甲酸甲酯的反应机理,甲醇在Au-Pd/SiO2催化剂上是通过甲氧基中间体得到甲酸甲酯的。  相似文献   

16.
合成气低温液相催化制甲醇和甲酸甲酯铜基催化剂体系研究 Ⅰ.氯化亚铜催化剂体系中各种因素的影响  相似文献   

17.
在低温低压条件下,采用浆态床反应器和铜基催化剂考察了从合成气一步同时合成甲醇和甲酸甲酯(MF)反应,并考察了溶剂和H2/CO摩尔比对CuCl和Cu-Cr氧化物催化剂的催化活性和MF选择性的影响。结果表明,溶剂对CuCl和Cu-Cr氧化物催化剂的催化活性和MF选择性都具有较显著的影响。二甲苯和十氢萘是较好的溶剂。Cu-Cr氧化物催化剂的催化活性和MF选择性随着H2/CO摩尔比的增加而降低。此外,用不同沉淀剂制备的Cu-Cr-Mn和Cu-Mn氧化物催化剂的催化活性与其相应的催化剂的比表面积呈正相关。  相似文献   

18.
CuZnOAl2O3催化剂用于合成甲醇的反应机理已经进行了大量的研究[1~3]。近年来,利用原位红外技术在研究合成甲醇的催化反应机理方面取得了不少研究成果[4~7]。但大多数实验是采用低铜含量催化剂[4,5]。本文采用高温加压式原位红外池,在513K和20MPa的条件下,...  相似文献   

19.
《Comptes Rendus Chimie》2015,18(3):302-314
In order to investigate the methanol synthesis reaction from CO2/H2, a comparative study of the reactivity of formate species on different types of catalysts and catalyst supports has been carried out. Formic acid was adsorbed on water–gas shift catalysts, Cu/ZnO/Al2O3 methanol synthesis catalyst and ZnO/Al2O3 support, Cu/ZnO/ZrO2 and Cu/ZnO/CeO2 methanol synthesis catalysts as well as their corresponding supports ZnO/ZrO2 and ZnO/CeO2. Superior reactivity and selectivity of dedicated methanol synthesis catalysts was evidenced by their behavior during the subsequent heating ramp, when these samples showed the simultaneous presence of formates and methoxy species and a higher stability of these reaction intermediates in the usual temperature range for the methanol synthesis reaction.  相似文献   

20.
用密度泛函理论(DFT)的B3-LYP方法和原子簇模型研究了碘和修饰银(110)表面对甲醇吸附的影响。结果表明,甲醇分子在干净的银表面吸附很弱甚至不吸附,但在氧或碘修饰过的银表面上,由于预吸附导致吸附能的增加而变得容易吸附。并进一步采用目前较新的映像电荷模型计算验证了在甲醇部分氧化制甲醛反应中氧或碘对银催化剂表面修饰的本质是电荷修饰这一推论,为实验中如何筛选修饰提供了良好的判据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号