首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
Iso-stearic acid, a short, stubby compound with branched, methylated tails has been shown to have high solubility in carbon dioxide. Tail solvation by carbon dioxide makes iso-stearic acid a good choice for use as a ligand to sterically stabilize metallic nanoparticles. Iso-stearic acid coated silver nanoparticles have been stably dispersed in carbon dioxide with hexane cosolvent. Neat carbon dioxide has successfully dispersed iso-stearic acid coated silver nanoparticles that had been deposited on either quartz or polystyrene surfaces. These results are the first reports of sterically stabilized nanoparticles in carbon dioxide without the use of any fluorinated compounds.  相似文献   

2.
This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and antisolvent to be recovered, thereby rendering it a green solvent process.  相似文献   

3.
超临界二氧化碳中含氟聚合物的合成*   总被引:1,自引:0,他引:1  
李虹  徐安厚  张永明 《化学进展》2007,19(10):1562-1567
超临界二氧化碳是廉价、低毒、不易燃、易回收、环境友好的惰性聚合介质,是传统有机溶剂的替代品。尤其是有望成为含氟单体的聚合溶剂,以替代目前使用的氟氯烃。本文详细地介绍了近年来以超临界二氧化碳为介质的氟烷基丙烯酸酯类单体和氟烯烃类单体的聚合反应研究,其中涉及氟烷基丙烯酸酯类单体的均聚和共聚,可熔融加工的四氟乙烯聚合物,离子交换树脂,偏氟乙烯的均聚和共聚合等。研究表明在超临界二氧化碳中的含氟单体的聚合反应有其它溶剂体系无法比拟的优点。  相似文献   

4.
Silver and silver iodide nanocrystals have been synthesized in the water-in-CO(2) reverse microemulsions formed by the commonly used surfactant, sodium bis(2-ethylhexyl)sulfosuccinate (AOT), in the presence of 2,2,3,3,4,4,5,5-octafluoro-1-pentanol as cosurfactant. The nanometer-sized aqueous domains in the microemulsion cores not only act as nanoreactors, but the surfactant interfacial monolayer also helps the stabilization of the metal and semiconductor nanoparticles. The transmission electron microscopy results show that silver and silver iodide nanocrystals with average diameters of 6.0 nm (standard deviation, SD=1.3 nm) and 5.7 nm (SD=1.4 nm), respectively, were formed. The results indicate that the method can be utilized as a general and economically viable approach for the synthesis of metal and semiconductor quantum dots in environmentally benign supercritical carbon dioxide.  相似文献   

5.
The production of silver and copper particles by laser ablation in an organic solvent and their in situ functionalization with amphiphilic copolymers bearing fluorinated side chains is presented. Aside the stabilization of the particles, the fluorinated side chains render the modified particles compatible with a perfluorinated matrix, which results in a homogeneous distribution of the particles in the matrix. The incorporation of silver particles in perfluorinated matrices is of special interest for the preparation of antibacterial composites, e.g. PTFE, which might be applied in antibacterial implants, e.g. antibacterial vascular prostheses. Laser ablation in liquids as a general method to produce charged nanoparticles of any metal is hence combined with sophisticated surface active compounds.  相似文献   

6.
Electrochemical fixation of atmospheric pressure of carbon dioxide to organic compounds is a useful and attractive method for synthesizing of various carboxylic acids. Electrochemical fixation of carbon dioxide, electrochemical carboxylation, organic halides, organic triflates, alkenes, aromatic compounds, and carbonyl compounds can readily occur in the presence of an atmospheric pressure of carbon dioxide to form the corresponding carboxylic acids with high yields, when a sacrificial anode such as magnesium or aluminum is used in the electrolysis. The electrochemical carboxylation of vinyl bromides was successfully applied for the synthesis of the precursor of nonsteroidal anti-inflammatory agents such as ibuprofen and naproxen. On the other hand, supercritical carbon dioxide (scCO2) has significant potential as an environmentally benign solvent in organic synthesis and it could be used both as a solvent and as a reagent in these electrochemical carboxylations by using a small amount of cosolvent.  相似文献   

7.
Fluoroalkyl-end-capped 2-acrylamido-2-methylpropanesulfonic acid cooligomers containing adamantyl segments were prepared by reaction of fluoroalkanoyl peroxide with 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 3-hydroxy-1-adamantyl acrylate (Ad-HAc). These obtained fluorinated AMPS-Ad-HAc cooligomers were found to form nanometer-size-controlled fine particles not only in water but also in a large variety of traditionally organic solvents. In addition, these fluorinated cooligomeric nanoparticles showed a good dispersibility in these solvents. Interestingly, the size of these fluorinated nanoparticles is extremely sensitive to solvent changes, and an increase of the particle size was observed in the solvents, in which the dielectric constant is higher or lower. More interestingly, these fluorinated AMPS-Ad-HAc cooligomeric nanoparticles exhibited a lower critical solution temperature around 52 degrees C in an organic medium (tert-butyl alcohol).  相似文献   

8.
Fluorinated polymers form an interesting class of materials with a wealth of unique properties including self-assembly, remarkably low surface energies, low absorbance to 157 nm UV light, and solubility in supercritical carbon dioxide. As a result many fluorinated polymers are of use in advanced technology applications. We review some of our work on the synthesis and characterization of block copolymers with fluorinated side chains, with special emphasis on surfaces formed using these polymers. The use of fluorinated polymers as photoresists for 157 nm lithography, with the possibility for processing in environmentally friendly supercritical carbon dioxide is also discussed.  相似文献   

9.
Water in oil droplets are used to control the size of silver metal nanoparticles. After synthesis, the silver metal particles are extracted from reverse micelles and redispersed in a non polar solvent. By increasing the size of the water droplets the average size of silver nanoparticles increases from 2 nm to 7 nm with a rather high size distribution. To narrow the panicle distribution a size selected precipitation method is used. By deposition of a dilute solution containing the coated particles on a carbon grid, the particles arrange themselves in a monolayer organized in a hexagonal network. At high particle concentration, the particles are organized in multilayers forming microcrystals arranged in a face centered cubic structure. The optical properties of the silver nanoparticles isolated in micellar solution or self-assembled in 2D or 3D supperlattices are reported.  相似文献   

10.
Electron microscopy, X-ray diffraction, and chromatography-mass spectrometry have been employed to investigate the reduction of solid silver caprylate in ethylene glycol with the formation of silver nanoparticles. The structural characteristics of silver nanoparticles have been studied as depending on the conditions of their synthesis, including temperature, reduction time, and silver salt concentration. It has been found that, in the studied range of parameters under the conditions, when solid silver caprylate is dispersed in ethylene glycol, the characteristics of resulting nanoparticles are almost independent of the synthesis temperature. This peculiarity is related to the fact that the formation and growth of nanoparticles occur on the surface of silver salt crystals and are accompanied by gradual dissolution thereof. In this system, ethylene glycol plays the roles of a reductant and a solvent for liquid reaction products.  相似文献   

11.
《Fluid Phase Equilibria》2001,178(1-2):169-177
The use of supercritical carbon dioxide as a reaction medium for polyester synthesis is hindered by the low solubility of diols in CO2. However, it has been previously demonstrated that fluorinated compounds can exhibit greater miscibility with carbon dioxide than their hydrocarbon analogs. Therefore, the phase behavior of fluorinated diols and divinyl adipate (DVA), an activated diester, in supercritical carbon dioxide has been investigated at 323 K. The phase behavior of equimolar mixtures of DVA with the most carbon dioxide-soluble diol, 3,3,4,4,5,5,6,6-octafluorooctan-1,8-diol (OFOD), was also determined. The solubility of a polyester synthesized from DVA and 2,2,3,3-tetrafluoro-1,4-butanediol (TFBD) was found to be less CO2-soluble than its monomers. DVA was much more soluble in CO2 than any of the fluorinated diols, therefore, no attempt was made to fluorinate the DVA structure. Because both substrates and polyester product were soluble in carbon dioxide, the enzymatic synthesis of a fluorinated polyester from DVA and octafluorooctandiol was performed in supercritical carbon dioxide, resulting in a polymer with a weight average molecular weight of 8232 Da.  相似文献   

12.
Metallic nanoparticles of palladium and silver ranging in size from 1 to 15 nm were produced entirely within carbon dioxide by spraying a carbon dioxide carrier solution containing CO2-soluble metal precursors into a CO2 receiving solution containing a reducing agent (NaBH(OAc)3 or H2) and fluorocarbon thiol stabilizing ligands. The process uses the benign solvent CO2 while also allowing for the production of nanoparticles with a limited number of chemical components. Particles were characterized by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS).  相似文献   

13.
A simple, inexpensive, single-step synthesis of gold and silver nanoparticles using poly(allylamine) (PAAm) as a reducing and stabilizing agent is reported. The synthetic process was carried out in aqueous solution, making the method versatile and environmentally friendly. The synthesized polymer-stabilized nanoparticles are stable in water without particle aggregation at room temperature for at least a month. We demonstrate successful ligand exchange on the polymer-stabilized gold nanoparticles (AuNPs) with a variety of omega-functionalized acid-, alcohol-, amine-, and biotin-terminated alkylthiols. The methodologies, including ligand exchange, also are applicable for the generation of finely dispersed silver nanoparticles. The synthesized gold and silver nanoparticles are characterized by UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The different ligand-stabilized AuNPs are also analyzed by Fourier transform infrared (FTIR) spectroscopy.  相似文献   

14.
Calcium chloride reacted with sodium carbonate in the presence of a variety of self-assembled molecular aggregates formed by fluoroalkyl end-capped acrylic acid, 2-methacryloyloxyethane sulfonic acid, dimethylacrylamide, and acryloylmorpholine oligomers in aqueous solutions to afford the corresponding fluorinated oligomers/calcium carbonate composites in excellent to moderate isolated yields. These fluorinated calcium carbonate composites thus obtained were shown to have a good dispersibility not only in water but also in traditional organic media including fluorinated solvents. Dynamic light scattering measurements (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that these fluorinated composites are nanometer-size-controlled particles and well dispersed in these media. Cross-linked fluoroalkyl end-capped acrylic acid co-oligomer containing poly(oxyethylene) units was also applied to the preparation of new cross-linked fluorinated calcium carbonate nanocomposites under similar conditions. The obtained cross-linked fluorinated calcium carbonate nanocomposites were found to have an extremely higher dispersibility in aqueous and organic media including fluorinated solvents, compared to that of the corresponding fluoroalkyl end-capped oligomer nanocomposites. In particular, it was verified that these fluorinated calcium carbonate nanocomposites are applicable to the dispersion above poly(methyl methacrylate) (PMMA) film surface. Interestingly, field-emission SEM (FE-SEM) images of the cross-section of the modified PMMA films showed that calcium carbonate particles dispersed into these PMMA films could be arranged regularly above the modified film surface. More interestingly, cross-linked fluorinated oligomeric aggregates were able to provide suitable host moieties for the crystallization of calcium carbonate.  相似文献   

15.
Fluoroalkyl end-capped vinylphosphonic acid cooligomers-encapsulated magnetite nanocomposites were prepared by the magnetization of aqueous ferric and ferrous ions in the presence of the corresponding fluorinated cooligomers and magnetic nanoparticles under alkaline conditions. These fluorinated cooligomers magnetic composites are nanometer size-controlled very fine particles and have a good dispersibility and stability in water and traditional organic solvents. These fluorinated nanocomposites were also applied to the surface modification of poly(methyl methacrylate) to exhibit a good oleophobicity imparted by fluorine on their surface. Fluoroalkyl end-capped 2-methacryloyloxyethanesulfonic acid oligomer-encapsulated magnetite nanocomposites and fluoroalkyl end-capped 2-acrylamide-2-methylpropanesulfonic acid oligomer-encapsulated magnetite nanocomposites were prepared in good isolated yields by the magnetization of iron chlorides in the presence of the corresponding oligomers and magnetic nanoparticles under similar conditions. Colloidal stability of these fluorinated nanocomposites thus obtained in water was demonstrated to become extremely higher than that of fluorinated vinylphosphonic acid cooligomers/magnetic nanocomposites.  相似文献   

16.
Fluoroalkyl end-capped acrylic acid and sulfonic acid cooligomers reacted with tetraethoxysilane (TEOS) and silica/nanoparticles under alkaline conditions to afford the corresponding cooligomers/silica nanoparticles (mean diameters: 32-173 nm) with a good dispersibility and stability in aqueous and organic media. Interestingly, fluorinated nanoparticles containing carboxy groups were found to exhibit a potent and selective anti-HIV-1 activity in vitro. In contrast, fluorinated cooligomers containing sulfo groups were shown to have a potent and selective anti-SIVmac activity in vitro.  相似文献   

17.
The thermal decomposition of the free-radical initiator bis(perfluoro-2-N-propoxyprionyl) peroxide (BPPP) was studied in dense carbon dioxide and a series of fluorinated solvents. For the fluorinated solvents, the observed first-order decomposition rate constants, k(obs), increased with decreasing solvent viscosity, suggesting a single-bond decomposition mechanism. The k(obs) values are comparatively larger in dense carbon dioxide and similar to the "zero-viscosity" rate constants extrapolated from the decomposition kinetics in the fluorinated solvents. The decomposition activation parameters demonstrate a compensation behavior of the activation enthalpy with the activation entropy upon change in solvent viscosity. Comparison of the change in activation parameter values upon change in solvent viscosity for BPPP with two additional initiators, acetyl peroxide (AP) and trifluoroacetyl peroxide (TFAP), further suggests that carbon dioxide exerts a very minimal influence on the decomposition mechanism of these initiators through solvent-cage effects.  相似文献   

18.
纳米材料绿色合成的标准是合成需使用对环境无污染的溶剂体系、还原剂以及无毒的稳定剂来进行.生物分子具备有机和无机质导向生成的能力,且具有热和化学稳定性、容易获得、价格便宜,最重要的是对环境无污染,可用于纳米材料的绿色制备.本文就笔者在生物分子辅助绿色合成纳米材料方面的研究成果做一汇总和介绍.  相似文献   

19.
This article presents the synthesis of gold nanoparticles in a single-phase supercritical fluid carbon dioxide solvent. The gold nanoparticles were formed by the reduction of triphenylphosphine gold(I) perfluorooctanoate with dimethylamineborane. Transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy reveal the formation of gold nanoparticles of 1 nm in diameter. A high dispersion stability of the gold nanoparticles in supercritical carbon dioxide can be obtained by binding both triphenylphosphine and fluorocarbon ligands on the surface of the gold nanoparticles.  相似文献   

20.
A simple, efficient and environmentally benign solid acid catalyst was prepared by anchoring a propyl sulfonic acid on the surface of silica‐coated magnetic nanoparticles by low cost precursors. The catalyst has been then engaged in the efficient β‐amino carbonyl compounds production via three component Mannich reaction under solvent free reaction condition at room temperature. After the completing the reaction, the catalyst was readily separated by external magnet and reused for 10 successive rounds of reaction, without any significant loss in catalytic efficiency. The solid acidic system presented reusable strategy for the efficient synthesis of β‐amino carbonyl compounds, simplicity in operation, and green aspects by avoiding toxic conventional catalysts under solvent‐free condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号