首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal derivatives of the octacationic tetrakis-2,3-[5,6-di{2-(N-methyl)pyridiniumyl}pyrazino]porphyrazine macrocycle [(2-Mepy)(8)TPyzPzH(2)](8+) (2-Mepy = 2-(N-methyl)pyridiniumyl ring) isolated as water-soluble hydrated iodide salts of the general formula [(2-Mepy)(8)TPyzPzM](I(8)).xH(2)O, (M = Mg(II)(H(2)O), Co(II), Cu(II), Zn(II); x = 2-5) were prepared from the corresponding neutral complexes [Py(8)TPyzPzM].xH(2)O previously reported. Reaction of these complexes with CH(3)I in N,N-dimethylformamide under mild conditions led to full quaternization of all eight pyridine N atoms and formation of the octacations [(2-Mepy)(8)TPyzPzM](8+). Clathrated water molecules could be eliminated from the species [(2-Mepy)(8)TPyzPzM](I(8)).xH(2)O by mild heating ( Co(I) process, but the site of electron transfer is reversed and the final product upon a further one-electron reduction is formulated as a Co(II) dianion as opposed to a Co(I) pi-anion radical. This sequence is similar to what was earlier reported for reduction of the same compound in pyridine. Reversible one-electron oxidations are also observed for the unmethylated species [Py(8)TPyzPzM].xH(2)O where M = Co(II) and Mn(II) in DMSO. Remarkably, the octacationic macrocycles [(2-Mepy)(8)TPyzPzM](I(8)).xH(2)O, (M = Mg(II)(H(2)O), Co(II), Cu(II), and Zn(II); x = 2-5) are more easily reduced at any step of the reduction than the corresponding unquaternized species with the same metal ion. This indicates a higher tendency to stepwise electron uptake after the quaternization process, which enhances the charge redistribution capability within the species formed by the electroreduction.  相似文献   

2.
A series of metal complexes of tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazine, [Py(8)TPyzPzH(2)], having the general formula [Py(8)TPyzPzM].xH(2)O (M = Mg(II)(H(2)O), Mn(II), Co(II), Cu(II), Zn(II); x = 3-8) were synthesized by reaction of the free-base macrocycle with the appropriate metal acetate in pyridine or dimethyl sulfoxide under mild conditions. Clathrated water and retained pyridine molecules for the Mn(II) and Co(II) species are easily eliminated by heating under vacuum, the water molecules being recovered by exposure of the unsolvated macrocycles to air. Magnetic susceptibility measurements and EPR spectra of the materials in the solid state provide basic information on the spin state of the Cu(II), Co(II), and Mn(II) species. Colloidal solutions caused by molecular aggregation are formed in nondonor solvents (CH(2)Cl(2), CHCl(3)), a moderately basic solvent (pyridine), and an acidic solvent (CH(3)COOH), with the extent of aggregation depending on the specific solvent and the central metal ion. UV-vis spectral monitoring of the solutions after preparation indicates that disaggregation systematically occurs as a function of time leading ultimately to the formation of clear solutions containing the monomeric form of the porphyrazine. Cyclic voltammetry and thin-layer spectroelectrochemistry show that each compound with an electroinactive metal ion undergoes four reversible one-electron reductions, leading to formation of the negatively charged species [Py(8)TPyzPzM](n-) (n = 1 - 4). The stepwise uptake of four electrons is consistent with a ring-centered reduction, but in the case of the cobalt complex a metal-centered (Co(II) --> Co(I)) reduction occurs in the first process and only three additional reductions are observed. No oxidations are observed in pyridine or CH(2)Cl(2) containing 0.1 M tetrabuthylammonium perchlorate (TBAP). The nonlinear optical properties (NLO) of the species [Py(8)TPyzPzM] (M = 2H(I), Cu(II), Zn(II), Mg(II)(H(2)O)) have also been examined with nanosecond pulses at 532 nm in dimethyl sulfoxide solution. Reverse saturable absorption is shown by all of the [Py(8)TPyzPzM] species, which exhibit distinct behavior depending on the nature of M and extent of aggregation.  相似文献   

3.
A new octacationic macrocycle, tetrakis-2,3-[5,6-di{2-(N-methyl)pyridiniumyl}pyrazino]porphyrazine, was obtained in its hydrated form as the water-soluble iodide salt. This compound, abbreviated as [(2-Mepy)(8)TPyzPzH(2)](I(8)).8H(2)O (2-Mepy = 2(N-methyl)pyridiniumyl moiety), was obtained by demetalation of the corresponding Mg(II) complex, [(2-Mepy)(8)TPyzPzMg(H(2)O)](I(8)).5H(2)O, which in turn was prepared from its corresponding neutral hydrated species tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazinato(monoaquo)magnesium(II), [Py(8)TPyzPzMg(H(2)O)].4H(2)O, by reaction with CH(3)I in N,N-dimethylformamide. The quaternization reactions by using CH(3)I or methyl p-toluenesulfonate were also conducted on the monomeric precursor 2,3-dicyano-5,6-di(2-pyridyl)-1,4-pyrazine, [(CN)(2)Py(2)Pyz], with formation of the monoquaternized ion [(CN)(2)Py(2-Mepy)Pyz](+) neutralized by iodide and p-toluenesulfonate anions. Single-crystal X-ray work allowed elucidation of the structure of the two salt-like species. The diquaternized ion [(CN)(2)(2-Mepy)(2)Pyz](2+) could also be obtained as a p-toluenesulfonate salt, but attempts at direct macrocyclization of this dicationic species were unsuccessful. The iodide salt [(2-Mepy)(8)TPyzPzH(2)](I(8)).8H(2)O is water-soluble, with different solubilities depending on the range of pH explored. It was established that the macrocycle [(2-Mepy)(8)TPyzPzH(2)](8+) undergoes facile deprotonation and behaves as a strong acid. Aggregation phenomena are observed for both the octacation [(2-Mepy)(8)TPyzPzH(2)](8+) and its corresponding centrally deprotonated species [(2-Mepy)(8)TPyzPz](6+). Nevertheless, both cationic moieties exist in their monomeric form under specific experimental conditions. UV-visible monitored titrations with NaOH provide information about the type of protonation/deprotonation equilibria which are complicated by the occurrence of aggregation phenomena.  相似文献   

4.
The solid state and solution structure of 2,3-dicyano-5,6-di(2-thienyl)-1,4-pyrazine, [(CN)(2)Th(2)Pyz], and its Pd(II) derivative, [(CN)(2)Th(2)Pyz(PdCl(2))(2)]·H(2)O, formed by reaction of [(CN)(2)Th(2)Pyz] with [(C(6)H(5)CN)(2)PdCl(2)] were characterized by X-ray, UV-visible, (1)H and (13)C NMR, and extended X-ray absorption fine structure (EXAFS) spectral measurements. The X-ray crystal structure of [(CN)(2)Th(2)Pyz] shows the presence of one thienyl ring positioned orthogonal to the rest of the molecule, with the two vicinal thienyl rings lying orthogonal to each other in a rare arrangement. NMR studies of [(CN)(2)Th(2)Pyz] in the solid state and in solutions of dimethylformamide or dimethyl sulfoxide confirm a nonequivalence of the thienyl rings in the solid state and also in solution. EXAFS results indicate that two distinct Pd(II) coordination sites are formed at the di(2-thienyl)pyrazino moiety of [(CN)(2)Th(2)Pyz(PdCl(2))(2)]·H(2)O, with identical Pd-N(pyz) (2.03(3) ?) and Pd-Cl (2.36(3) ?) bond lengths but with different Pd-S1 (2.25(4) ?) and Pd-S2 (3.21(5) ?) bond distances in an overall asymmetric molecular framework. Density functional theory (DFT) and time-dependent DFT (TDDFT) theoretical studies also provide information about the structure and spectral behavior of the precursor and its metalated Pd(II) derivative. (1)H/(13)C NMR and UV-visible spectral measurements were also carried out on two heteropentametallic porphyrazine macrocycles which were prepared by a reaction of PdCl(2) with [Th(8)TPyzPzM] where Th(8)TPyzPz = tetrakis-2,3-[5,6-di-(2-thienyl)-pyrazino]porphyrazinato dianion and M = Mg(II)(H(2)O) or Zn(II). Spectroscopic data on the newly synthesized [(PdCl(2))(4)Th(8)TPyzPzM] compounds suggest that the binding of PdCl(2) involves coordination sites of the type S(2(th))PdCl(2) with the two thienyl rings of each di(2-thienyl)pyrazino fragment bound to Pd(II) in an equivalent manner ("th-th" coordination). This is similar to what was found for the corresponding octapyridinated analogues ("py-py" coordination).  相似文献   

5.
The photoactivity for the generation of singlet oxygen, (1)O(2), the key cytotoxic agent in the anticancer treatment known as photodynamic therapy (PDT), and the fluorescence response of the highly electron-deficient tetrakis(thiadiazole)porphyrazines of formula [TTDPzM] (M = Mg(II)(H(2)O), Zn(II), Al(III)Cl, Ga(III)Cl, Cd(II), Cu(II), 2H(I)) were examined (c ? 10(-5) M) in dimethylformamide (DMF) and/or in DMF preacidified with HCl (DMF/HCl; [HCl] = 1-4 × 10(-4) M). The singlet oxygen quantum yield (Φ(Δ)) of all the compounds was determined by using a widely employed procedure based on the selective oxidation of the 1,3-diphenylisobenzofuran (DPBF), modified in part as reported. The list of the Φ(Δ) values indicates excellent photosensitizing properties for the series of compounds carrying "closed shell" metal ions, with values measured in DMF/HCl respectful of the "heavy atom effect" for the first four lighter centers, increasing in the order Mg(II) < Al(III) < Zn(II) < Ga(III). Data of Φ(Δ) concerning the unmetalated species [TTDPzH(2)], present in solution in the form of the corresponding anion [TTDPz](2-), and the Cd(II) and Cu(II) complexes are also presented and discussed. Extensive discussion is also developed on the fluorescence quantum yield values Φ(F), with data on the Mg(II) and Al(III) compounds in DMF/HCl (0.44 and 0.53, respectively) indicative of promising perspectives for applications in fluorescence imaging techniques. The Φ(F) data of the studied porphyrazine series, Φ(F)(Pz), correlate linearly with those of the homologous phthalocyaninato complexes, Φ(F)(Pc), suggesting a closely similar behaviour between the two classes of compounds. The incorporation of [TTDPzZn] into liposomes was successfully achieved following the detergent depletion method (DDM) from a mixed micellar solution by means of gel-filtration. Retention of [TTDPzZn] (~40%) in its photoactive monomeric form into liposomes is proved by absorption and fluorescence spectra, this proposing the Zn(II) complex as a promising candidate for use in PDT.  相似文献   

6.
New palladium(II) complexes of the free-base tetrakis[2,3-(5,6-di-2-pyridylpyrazino)porphyrazine], [Py 8TPyzPzH 2], have been prepared and their physicochemical properties examined. The investigated compounds are the pentanuclear species [(PdCl 2) 4Py 8TPyzPzPd], the monopalladated complex [Py 8TPyzPzPd], and its corresponding octaiodide salt [(2-Mepy) 8TPyzPzPd](I) 8. All three Pd (II) complexes have a common central pyrazinoporphyrazine core and differ only at the periphery of the macrocycle, where the simple dipyridinopyrazine fragments present in [Py 8TPyzPzPd] bear four PdCl 2 units coordinated at the pyridine N atoms in the pentanuclear complex, [(PdCl 2) 4Py 8TPyzPzPd], or carry pyridine-N(CH 3) (+) moieties in the iodide of the octacation [(2-Mepy) 8TPyzPzPd] (8+). The structural features of the pentanuclear complex [(PdCl 2) 4Py 8TPyzPzPd], partly supported by X-ray data and solution (1)H NMR spectra of the [(CN) 2Py 2PyzPdCl 2] precursor, were elucidated through one- and two-dimensional (1)H NMR spectra in solution and density functional theory (DFT) calculations. Structural information on the monopalladated complex [Py 8TPyzPzPd] was also obtained from DFT calculations. It was found that in the complex [(PdCl 2) 4Py 8TPyzPzPd] the peripheral PdCl 2 units adopt a py-py coordination mode and the generated N 2PdCl 2 moieties are directed nearly perpendicular to the plane of the pyrazinoporphyrazine ring, strictly recalling the arrangement found for the palladated precursor [(CN) 2Py 2PyzPdCl 2]. NMR and DFT results consistently indicate that of the four structural isomers predictable for [(PdCl 2) 4Py 8TPyzPzPd], one having all four N 2PdCl 2 moieties pointing on the same side of the macrocyclic framework (i.e., isomer 4:0, plus the 3:1 and the 2:2-cis and 2:2-trans isomers), the 4:0 isomer ( C 4 v symmetry) is the predominant form present. According to cyclic voltammetry and spectroelectrochemical results in pyridine, dimethyl sulfoxide (DMSO), and dimethylformamide (DMF), the monopalladated complex [Py 8TPyzPzPd] undergoes four reversible or quasi-reversible one-electron ligand-centered reductions, similar to the behavior also observed for the pentanuclear complex [(PdCl 2) 4Py 8TPyzPzPd], which shows an additional reduction peak attributable to the presence of PdCl 2. Owing to the electron-withdrawing properties of the PdCl 2 units, the pentanuclear complex is easier to reduce than the mononuclear complex [Py 8TPyzPzPd], some related [Py 8TPyzPzM] complexes, and their porphyrin or porphyrazine analogues, so much so that the corresponding monoanion radical is generated at potentials close to 0.0 V vs SCE in DMSO or DMF. In turn, the monoanion of [(2-Mepy) 8TPyzPzPd](I) 8 is also extremely easy to generate electrochemically. Indeed, because of the eight positively charged N-CH 3 (+) groups in this complex the first reduction occurs at potentials close to +0.10 V in DMSO or DMF. The redox behavior of the mono- and pentapalladated complexes has been rationalized on the basis of a detailed DFT analysis of their ground-state electronic structure.  相似文献   

7.
The multiphoton absorption properties of the tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazinato(monoacquo)-Mg(II) complex [Py(8)TPyzPzMg(H(2)O)] (1) are reported and interpreted. The nonlinear optical behavior of 1 and the characterization of the excited states important for the nonlinear absorption process were studied at the pump frequency of the second harmonic generation of a Nd:YAG laser in the nanosecond time regime. It was found that complex 1 shows a very good optical limiting performance at 532 nm, which derives from two processes: (a) a reverse-saturable absorption process, which involves a triplet excited state at low intensities, and (b) a two-photon absorption process at higher intensities, which is due to the formation of the radical monoanion of 1, [Py(8)TPyzPzMg(H2O)](.-), during the photoreduction of the triplet state. The participation of a monoanion in determining the overall nonlinear absorption behavior of 1 is found, for the first time, for a tetrapyrrolic system. One can deduce that the involvement of the monoanion derives from the electron-withdrawing effect of the dipyridinopyrazino fragments externally attached to the porphyrazine core which make the reduced form of 1 easily accessible. These results suggest a modification of tetrapyrrolic systems with new nonlinear absorption properties.  相似文献   

8.
Russian Journal of Coordination Chemistry - The complexes [Zn(CH3COO)2(NioxH2)(DMF)(H2O)] (I), [Cd(CH3COO)2-(NioxH2)(DMF)(H2O)] (II), [Zn(CH3COO)2(NioxH2)(S-Nia)(H2O)] · DMF (III),...  相似文献   

9.
Three new bis-terdentate Schiff base [2 + 2] macrocycles (H(2)L(Et), H(2)L(Pr), and H(2)L(Bu)) have been prepared in high yields by 1:1 condensation of 2,2'-iminobisbenzaldehyde with 1,2-diaminoethane, 1,3-diaminopropane, and 1,4-diaminobutane, respectively. Metalation of these macrocycles yields the corresponding dicopper(II) acetate (1, 2, and 3) and tetrafluoroborate (4, 5, and 6) complexes. The structures of H(2)L(Et), H(2)L(Pr), H(2)L(Bu), [Cu(II)(2)L(i)(OAc)(2)]·solvents (where i is Et, Pr or Bu) and [Cu(II)(2)L(Pr)(DMF)(4)] (BF(4))(2)·0.5H(2)O are reported. Intramolecular hydrogen bonding is a feature of the metal-free macrocycles. The copper(II) centers in [Cu(II)(2)L(i)(OAc)(2)]·solvents are four coordinate, and the macrocycles have U-shaped (Et, Bu) or stepped (Pr) conformations. Complex 5 crystallizes with two dimethylformamide (DMF) molecules bound per five coordinate copper(II) center. Electrochemical studies revealed ligand based oxidations for all of the macrocycles and complexes. Complexes 1 and 2 undergo two quasi-reversible oxidations in DCM which are associated with the deposition of a visible film on the electrode after multiple scans in this oxidative region, suggestive of electropolymerization. Complexes 4-6, studied in MeCN, have Cu(II) → Cu(I) redox potentials at more positive potentials than for 1-3.  相似文献   

10.
Russian Journal of Coordination Chemistry - New coordination zinc compounds based on 3-methyl-4-formyl-1-phenylpyrazol-5-one acylhydrazones [Zn(L)(CH3COO)Solv] (Solv is H2O (I), Py (II)) are...  相似文献   

11.
Three new Be(II), Mg(II) and Zn(II) phthalocyaninato(2-) complexes with 4-picoline (4-Mepy) in the crystalline form have been obtained by recrystallization of the respective M(II)Pc in 4-picoline under water-free conditions. BePc and ZnPc in 4-picoline solution form 4 + 1 coordinated complexes, while the 4-Mepy molecules biaxially ligate MgPc. The planar phthalocyaninato(2-) macroring of BePc and ZnPc upon mono-axial ligation by the 4-Mepy molecule adopts the saucer-shape form. The interaction of the central M(II) with the ligated 4-Mepy molecule leads to a deviation of the metal from the centre cavity by ∼0.31 Å and ∼0.35 Å in the Be and Zn phthalocyaninato complexes, respectively. In MgPc, the Pc ring upon biaxial ligation retains a planar configuration. The axial M(II)–N(4-Mepy) bond is longer than the four equatorial M(II)–Niso bonds in Mg and Zn phthalocyaninato complexes, while in the Be complex the opposite relation between the axial and equatorial Be–N bonds is observed. Thermogravimetric analysis for all these compounds exhibits only one slope down, due to the loss of 4-Mepy molecules from the complexes, which transform finally into the respective M(II)Pc complexes in the β-form.  相似文献   

12.
Three Phe and Tyr derivatives, 2-amino-3-(4-aminophenyl)-propionic acid (AAP), 3E-[5-(2-amino-2-carboxyethyl)-2-methoxyphenyl]-acrylic acid (AMPA) and 3-(4-aminophenyl)-2-(carboxymethyl-amino)-propionic acid (ACP) have been chosen as the ligands to construct four kinds of novel metal-organic frameworks (MOFs) (five structures). These structures are, [Cd(II){(R)-AAP}(Py)(H(2)O)](ClO(4)), (R)-1; [Cd(II){(S)-AAP}(H(2)O)(2)](ClO(4)), (S)-2; [Zn(2) (II){(R,S)-AMPA}(H(2)O)], (R,S)-3; [Zn(2) (II){(R)-ACP}(Py)(3)](ClO(4))(2), (R)-4; and the inversion twin of (R)-1. Rational design to adjust the "depth" and the "width" of ligands can mediate the size and the shape of the grids of these 2D layers. Additionally, among these compounds, three pure chiral coordination polymers are obtained, owing to the inducement of chirality by the modified amino acids. This property makes them potential NLO materials.  相似文献   

13.
Following a previous report on the synthesis and physicochemical characterization of a novel class of porphyrazines carrying peripherally annulated seven-membered rings, i.e., tetrakis-2,3-(5,7-diphenyl-1,4-diazepino)porphyrazine [Ph(8)DzPzH(2)].4H(2)O and its metal derivatives [Ph(8)DzPzM].xH(2)O (x = 2-7, M = Mg(II)(H(2)O), Cu(II), and Zn(II)), a new more convenient procedure is reported here, allowing the preparation in high yields of the Li(I) and Na(I) derivatives of formulas [Ph(8)DzPzLi(2)].5H(2)O and [Ph(8)DzPzNa(2)].6H(2)O, which can be directly converted into other metal derivatives under mild conditions (room temperature) and in good yields. The series studied has been extended to include the Mn(II) and Co(II) complexes also reported here for the first time. Physicochemical characterization of the new "diazepinoporphyrazines" was based on fast atom bombardment (FAB) mass spectrometry and X-ray powder patterns, infrared (IR), electron paramagnetic resonance (EPR), and room-temperature magnetic susceptibility measurements. A detailed discussion of the UV-vis spectra emphasizes the role played by the external diazepine rings in electron delocalization through their tautomeric or protonated forms present in neutral, basic, and acidic media. The nonlinear optical effect of optical limiting for the different species [M = 2H, Mg(II)(H(2)O), Mn(II), Co(II), Cu(II), and Zn(II)] has also been measured. It has been observed that the extent of the optical limiting depends on the specific M center. The observed nonlinear optical features are analyzed and discussed in terms of the electronic and magnetic properties exhibited by some of the metal ions and taking into account the model of the excited-state absorption in which the nature of M determines the kinetics of formation of the highly absorbing state of the specific complex examined. As evidenced by the detailed electrochemical and spectroelectrochemical study carried out on this new class of macrocycles, one of the most important aspects is the facilitated electron delocalization for the oxidized and reduced species allowed by a 1H-6Htautomerism taking place on the peripheral diazepine rings.  相似文献   

14.
We report a solid-state (25)Mg NMR spectroscopic study of two magnesium-containing organic compounds: monopyridinated aqua(magnesium) phthalocyanine (MgPc.H(2)O.Py) and chlorophyll a (Chla). Each of these compounds contains a Mg(II) ion coordinating to four nitrogen atoms and a water molecule in a square-pyramidal geometry. Solid-state (25)Mg NMR spectra for MgPc.H(2)O.Py were obtained at 11.7 T (500 MHz for (1)H) for a (25)Mg-enriched sample (99.1% (25)Mg atom) using both Hahn-echo and quadrupole Carr-Purcell Meiboom-Gill (QCPMG) pulse sequences. Solid-state (25)Mg NMR spectra for Chla were recorded at (25)Mg natural abundance (10.1%) at 19.6 T (830 MHz for (1)H). The (25)Mg quadrupole parameters were determined from spectral analyses: MgPc.H(2)O.Py, C(Q) = 13.0 +/- 0.1 MHz and eta(Q) = 0.00 +/- 0.05; Chla, C(Q) = 12.9 +/- 0.1 MHz and eta(Q) = 1.00 +/- 0.05. This work represents the first time that Mg(II) ions in a square-pyramidal geometry have been characterized by solid-state (25)Mg NMR spectroscopy. Extensive quantum mechanical calculations for electric-field-gradient (EFG) and chemical shielding tensors were performed at restricted Hartee-Fock (RHF), density functional theory (DFT), and second-order M?ller-Plesset perturbation theory (MP2) levels for both compounds. Computed (25)Mg nuclear quadrupole coupling constants at the RHF and MP2 levels show a reasonable basis-set convergence at the cc-pV5Z basis set (within 7% of the experimental value); however, B3LYP results display a drastic divergence beyond the cc-pVTZ basis set. A new crystal structure for MgPc.H(2)O.Py is also reported.  相似文献   

15.
Unsolvated magnesium formate crystallizes upon reaction of the metal nitrate with formic acid in DMF at elevated temperatures. Single-crystal XRD studies reveal the formation of [Mg3(O2CH)6 [symbol: see text] DMF], 1, a metal-organic framework with DMF molecules filling the channels of an extended diamondoid lattice. The DMF molecules in 1 can be entirely removed without disruption to the framework, giving the guest-free material alpha-[Mg3(O2CH)6], 2. Compound 2 has been characterized by both powder and single-crystal XRD studies. Thermogravimetric analyses of 1 show guest loss from 120 to 190 degrees C, with decomposition of the sample at approximately 417 degrees C. Gas sorption studies using both N2 and H2 indicate that the framework displays permanent porosity. The porosity of the framework is further demonstrated by the ability of 2 to uptake a variety of small molecules upon soaking. Single-crystal XRD studies have been completed on the six inclusion compounds [Mg3(O2CH)6 [symbol: see text] THF], 3; [Mg3(O2CH)6 [symbol: see text] Et2O], 4; [Mg3(O2CH)6 [symbol: see text] Me2CO], 5; [Mg3(O2CH)6 [symbol: see text] C6H6], 6; [Mg3(O2CH)6 [symbol: see text] EtOH], 7; and [Mg3(O2CH)(6) [symbol: see text] MeOH], 8. Analyses of the metrical parameters of 1-8 indicate that the framework has the ability to contract or expand depending on the nature of the guest present.  相似文献   

16.
Three novel metal-organic frameworks (MOFs) formulated as [Zn(2)M(BPDC)(3)(DMF)(2)].4DMF (M = Co(II), Ni(II) or Cd(II); BPDC = 4,4'-biphenyldicarboxylate; DMF = N,N'-dimethylformamide) have been prepared via solvothermal synthesis from mixtures of the corresponding transition metal salts and 4,4'-biphenyldicarboxylic acid (H(2)BPDC). The framework structures are characterized by single-crystal X-ray diffraction analysis, IR and UV-vis diffuse reflectance spectroscopy, thermogravimetric analysis (TGA), and X-ray powder diffraction (XRPD). All three compounds possess essentially the same 2-D layered coordination framework consisting of linear heterotrinuclear secondary building units (SBUs) connected by rigid bridging BPDC ligands. Crystal data: for (C(60)H(66)CoN(6)O(18)Zn(2)): monoclinic, space group P2(1)/n, M = 1348.86, a = 20.463(4), b = 14.819(3), c = 23.023(5) A, beta = 111.75(3) degrees , V = 6484(2) A(3), Z = 4, D(c) = 1.382 Mg m(-3). For (C(60)H(66)N(6)NiO(18)Zn(2)): monoclinic, space group P2(1)/n, M = 1348.64, a = 11.670(2), b = 14.742(3), c = 19.391(4) A, beta = 102.29(3) degrees , V = 3259.5(11) A(3), Z = 2, D(c) = 1.374 Mg m(-3). For (C(60)H(66)CdN(6)O(18)Zn(2)): monoclinic, space group P2(1)/n, M = 1402.33, a = 11.491(2), b = 14.837(3), c = 19.386(4) A, beta = 101.53(3) degrees , V = 3238.3(11) A(3), Z = 2, D(c) = 1.438 Mg m(-3).  相似文献   

17.
1 INTRODUCTION Nitronyl nitroxides, independently or in combina- tion with metal ions, have been one of the most wi- dely studied systems in molecular magnetism for understanding radical-radical or metal-radical inte- ractions as well as for synthesizing organic ferroma- gnets and metal-radical magnetic materials[1~4]. Up to now, lots of metal-radical complexes have been reported[5~8]. On the other hand, cooperative inter- molecular interactions, such as coordination bonds, hydrogen bon…  相似文献   

18.
Heteropolynuclear organometallic compounds have been constructed by using two kinds of ferrocene-based ligands, 1,1'-ferrocenedicarboxylic acid (H(2)L(1)) and ferrocenecarboxylic acid (HL(2)). Reactions the ligand H(2)L(1) with copper(II) and nickel(II) salts, in the presence of pyridine, give a tetranuclear Cu(2)Fe(2) mixed-metallic box Cu(2)L(1)(2)(Py)(2)(DMF)(2)(H(2)O)(2) (1) and a tetranuclear heterobimetallic helix Ni(2)L(1)(2)(Py)(4)(H(2)O) (2), respectively. In these complexes, the ferrocene moieties show cisoid conformations which lead to the formation of the finite coordination geometry, i.e. to molecular complexes. Interactions of the ligand H(2)L(1) with lanthanide ions afford two-dimensional networks [La(2)L(1)(3)(CH(3)OH)(4)]( infinity ) (3), [Eu(2)L(1)(3)(H(2)O)(5)]( infinity ) (4), and [Gd(2)L(1)(3)(CH(3)OH)(2)(H(2)O)(3)]( infinity ) (5), respectively, in which transoid conformations of the ferrocene moiety provide opportunities to form infinite 2-D networks. It is suggested that the conformational freedom of the ferrocene moiety makes the ligand L(1) display different conformations and coordination modes in these complexes. In addition, the pi.pi interactions related to the ferrocene moieties were also found to stabilize the supramolecular architectures in the solid state. As a comparison, reaction of lanthanide ions with the ligand HL(2) resulted in three isostructural heterodinuclear windmill-shaped compounds Ln(2)L(2)(6)(CH(3)OH)(2)(H(2)O)(5) [Ln = La (6), Eu (7), and Gd (8)] by simply diffusing the solutions of lanthanide ions into the mixture of HL(2) and NaOH, respectively. Electrochemical properties of the ferrocene-containing complexes 1-8 are also investigated in the solution or solid state.  相似文献   

19.
Tetrakis-2,3-[5,6-di-(2-pyridyl)pyrazino]porphyrazinatopalladium(II) [Py 8TPyzPzPd] ( 1) and the corresponding pentapalladated species [(PdCl 2) 4Py 8TPyzPzPd] ( 2), dissolved (c approximately 10 (-5)-10 (-6) M) in preacidified dimethylformamide ([HCl] approximately 10 (-4) M), behave as potent photosensitizing agents for the production of singlet oxygen, (1)O 2, with Phi Delta values of 0.89 +/- 0.04 and 0.78 +/- 0.05, respectively. The related octacation [(2-Mepy) 8TPyzPzPd] (8+) ( 3), examined under similar experimental conditions, exhibits lower Phi Delta values, that is, 0.29 +/- 0.02 (as an iodide salt) and 0.32 +/- 0.02 (as a chloride salt). In view of the very high values of Phi Delta, the photophysics of complexes 1 and 2 has been studied by means of pump and probe experiments using ns laser pulses at 532 nm as excitation source. Both complexes behave like reverse saturable absorbers at 440 nm because of triplet excited-state absorption. The lifetimes of the triplet excited states are 65 and 96 ns for the penta- and mononuclear species, respectively. Fluorescence quantum yields (Phi f) are approximately 0.1% for both 1 and 2. Such low Phi f values for the two complexes are consistent with the high efficiency of triplet excited-state formation and the measured high yields of (1)O 2. Time-dependent density-functional theory (TDDFT) calculations of the lowest singlet and triplet excited states of the mono- and pentapalladated species help to rationalize the photophysical behavior and the relevant activity of the complexes as photosensitizers for the (1)O 2 ( (1)Delta g) generation.  相似文献   

20.
A series of six new Zn (II) compounds, viz., [Zn(HLASA)2(Py)2] ( 1 ), [Zn(HLMASA)2(Py)2] ( 2 ), [Zn(HLMASA)2(4‐MePy)2] ( 3 ), [Zn(HLCASA)2(4‐MePy)2] ( 4 ), [Zn(HLBASA)2(Py)2] ( 5 ), [Zn(HLBASA)2(4‐MePy)2] ( 6 ) and representative Cu (II) and Cd (II) complexes, viz., [Cu(HLASA)2(Py)2(H2O)] ( 7 ) and [Cd(HLBASA)2(Py)3] ( 8 ) [(HLXASA)? = para‐substituted 5‐[(E)‐2‐(aryl)‐1‐diazenyl]‐2‐hydroxybenzoate with X = H (ASA), Me (MASA), Cl (CASA) or Br (BASA); Py = pyridine; 4‐MePy = 4‐methylpyridine] have been synthesized and characterized by spectroscopic techniques and single‐crystal X‐ray diffraction analysis. The structural characterization of the compounds revealed distorted tetrahedral ( 1 – 6 ), square‐pyramidal ( 7 ) and pentagonal‐bipyramidal ( 8 ) coordination geometries around the metal atom, in which the aryl‐substituted diazosalicylate ligands are coordinated only through the oxygen atoms of carboxylate groups, either in an anisobidentate or isobidentate mode; meanwhile, the 2‐hydroxy groups of the monoanionic ligand (HLXASA)? are involved only in intramolecular O‐H···O hydrogen bonds with the carboxylate function. In the crystal structures of 1 – 8 , the complex molecules are assembled by π‐stacking interactions giving mostly infinite 1D strands. The intermolecular binding in the solid state structures is accomplished by diverse additional non‐covalent contacts including C‐H···O, C‐H···N, C‐H···π, C‐H···Br, O···Br, Br···π and van der Waals contacts. Although the primary and secondary ligands in the Zn (II) complex series 1 – 6 carry different substituents at the periphery (X = H, Me, Cl, Br for (HLXASA)? and R = H, Me for 4‐Py‐R), five of the crystal structures were isostructural. Additionally, the antimicrobial activity of the pro‐ligands H2LXASA and their Zn (II), Cu (II) and Cd (II) compounds were studied in a comparative manner, showing high sensitivity (IZD ≥ 20) against Bacillus subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号