首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   14篇
化学   82篇
力学   12篇
数学   23篇
物理学   7篇
  2023年   3篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   10篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   9篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1983年   1篇
  1982年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1969年   1篇
  1963年   1篇
  1962年   4篇
  1961年   1篇
  1960年   1篇
  1934年   1篇
  1923年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
1.
2.
Herein, the pivotal role of secondary nucleation in a crystallization-enhanced deracemization process is reported. During this process, complete and rapid deracemization of chiral conglomerate crystals of an isoindolinone is attained through fast microwave-assisted temperature cycling. A parametric study of the main factors that affect the occurrence of secondary nucleation in this process, namely agitation rate, suspension density, and solute supersaturation, confirms that an enhanced stereoselective secondary nucleation rate maximizes the deracemization rate. Analysis of the system during a single temperature cycle showed that, although stereoselective particle production during the crystallization stage leads to enantiomeric enrichment, undesired kinetic dissolution of smaller particles of the preferred enantiomer occurs during the dissolution step. Therefore, secondary nucleation is crucial for the enhancement of deracemization through temperature cycles and as such should be considered in further design and optimization of this process, as well as in other temperature cycling processes commonly applied in particle engineering.  相似文献   
3.
Three Pt4L2L′2 heteroleptic rectangles ( 1 – 3 ), containing ditopic redox-active bis-pyridine functionalized perylene bisimide (PBI) ligands PBI-pyr2 ( L ) are reported. Co-ligand L′ is a dicarboxylate spacer of varying length, leading to modified overall size of the assemblies. 1H NMR spectroscopy reveals a trend in the splitting and upfield chemical shift of the PBI-hydrogens in the rectangles with respect to free PBI, most pronounced with the largest strut length ( 3 ) and least with the smallest strut length ( 1 ). This is attributed to increased rotational freedom of the PBI-pyr 2 ligand over its longitudinal axis (Npy-Npy), due to increased distance between the PBI-surfaces, which is corroborated by VT-NMR measurements and DFT calculations. The intramolecular motion entails desymmetrization of the two PBI-ligands, in line with cyclic voltammetry (CV) data. The first (overall two-electron) reduction event and re-oxidation for 1 display a subtle peak-to-peak splitting of 60 mV, whilst increased splitting of this event is observed for 2 and 3 . The binding of pyrene in 1 is probed to establish proof of concept of host-guest chemistry enabled by the two PBI-motifs. Fitting the binding curve obtained by 1H NMR titration with a 1:1 complex formation model led to a binding constant of 964±55 m −1. Pyrene binding is shown to directly influence the redox-chemistry of 1 , resulting in a cathodic and anodic shift of approximately 46 mV on the first and second reduction event, respectively.  相似文献   
4.
Tamás Bakos  Irén Vincze 《合成通讯》2013,43(10):1377-1383
A new, high-yield preparation of 16-methylene-17-ketosteroids by the methylenation of trimethylsilyl enol ethers is described.  相似文献   
5.
Hydrolysis reactions of di- and trinuclear organotin halides yielded large novel cage compounds containing Sn−O−Sn bridges. The molecular structures of two octanuclear tetraorganodistannoxanes showing double-ladder motifs, viz., [{Me3SiCH2(Cl)SnCH2YCH2Sn(OH)CH2SiMe3}2(μ-O)2]2 [ 1 , Y=p-(Me)2SiC6H4-C6H4Si(Me)2] and [{Me3SiCH2(I)SnCH2YCH2Sn(OH)CH2SiMe3}2(μ-O)2]2 ⋅ 0.48 I2 [ 2⋅ 0.48 I2, Y=p-(Me)2SiC6H4-C6H4Si(Me)2], and the hexanuclear cage-compound 1,3,6-C6H3(p-C6H4Si(Me)2CH2Sn(R)2OSn(R)2CH2Si(Me)2C6H4-p)3C6H3-1,3,6 ( 3 , R=CH2SiMe3) are reported. Of these, the co-crystal 2⋅ 0.48 I2 exhibits the largest spacing of 16.7 Å reported to date for distannoxane-based double ladders. DFT calculations for the hexanuclear cage and a related octanuclear congener accompany the experimental work.  相似文献   
6.
We have quantum chemically analyzed element−element bonds of archetypal HnX−YHn molecules (X, Y=C, N, O, F, Si, P, S, Cl, Br, I), using density functional theory. One purpose is to obtain a set of consistent homolytic bond dissociation energies (BDE) for establishing accurate trends across the periodic table. The main objective is to elucidate the underlying physical factors behind these chemical bonding trends. On one hand, we confirm that, along a period (e. g., from C−C to C−F), bonds strengthen because the electronegativity difference across the bond increases. But, down a period, our findings constitute a paradigm shift. From C−F to C−I, for example, bonds do become weaker, however, not because of the decreasing electronegativity difference. Instead, we show that the effective atom size (via steric Pauli repulsion) is the causal factor behind bond weakening in this series, and behind the weakening in orbital interactions at the equilibrium distance. We discuss the actual bonding mechanism and the importance of analyzing this mechanism as a function of the bond distance.  相似文献   
7.
Photochemical activation of [(PNNH)Rh(N3)] (PNNH=6‐di‐(tert‐butyl)phosphinomethyl‐2,2′‐bipyridine) complex 2 produced the paramagnetic (S=1/2), [(PNN)Rh?N.‐Rh(PNN)] complex 3 (PNN?=methylene‐deprotonated PNNH), which could be crystallographically characterized. Spectroscopic investigation of 3 indicates a predominant nitridyl radical (.N2?) character, which was confirmed computationally. Complex 3 reacts selectively with CO, producing two equivalents of [(PNN)RhI(CO)] complex 4 , presumably by nitridyl radical N,N‐coupling.  相似文献   
8.
The metalloradical activation of o-aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)-carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium-sized ring structures. Herein we make use of the intrinsic radical-type reactivity of cobalt(III)-carbene radical intermediates in the [CoII(TPP)]-catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8-membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8-membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis-allylic/benzallylic C−H bond to the carbene radical, followed by two divergent processes for ring-closure to the two different types of 8-membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o-quinodimethanes (o-QDMs) which undergo a non-catalyzed 8π-cyclization, DFT calculations suggest that ring-closure to the monobenzocyclooctadienes involves a radical-rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring-closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt-porphyrin catalyst.  相似文献   
9.
A unique advanced intermediate: 3-Pentadecylcyclohexanone was synthetized from the crude product which contained a mixture of cardanol, cardol and 2-methylcardol, which was hydrogenated onto Pd/C at 80 °C. From this alkylated cyclohexanone: C15 alkylated adipic acid, caprolactam, caprolactone, were synthetized in high yields, such products may have many potentially applications in polymer chemistry. The condensation of the 3-pentadecyl-cyclohexanone and triethylene glycol in oxidative or reductive conditions gave aryl ether and cyclohexyl ether, this may be a way to prepare intermediate for surfactant chemistry. Therefore we show that Cashew Nut Shell Liquid (CNSL) may lead to numerous useful compounds thank to the preparation of a unique advanced intermediate.  相似文献   
10.
Fabrication of submicrometer structures by two-photon-initiated polymerization is performed with an inexpensive and low-power microlaser. This is made possible by the design of photoinitiators with strong two-photon absorption cross sections. We analyze the influence of both material properties and irradiation conditions on the two-photon polymerization rate and show that resins based on our highly sensitive two-photon photoinitiator can be solidified with microlaser excitation, whereas commercial UV photoresins require ultrashort and intense laser pulses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号