首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
A new self-activated yellow-emitting Zn2V2O7 phosphor was synthesized by high temperature solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the sample with monoclinic formation of Zn2V2O7. The excitation and emission spectra indicated the phosphor can be efficiently excited by near ultraviolet (NUV) light in 220–400 nm range and exhibit a bright broad yellow emission with the highest emission intensity at 531 nm. The broad emission band from 400 to 650 nm can be attributed to the charge transfer transition in the VO4 tetrahedra, which suggests that the phosphor is a promising yellow phosphor applied for white light-emitting diodes (WLED).  相似文献   

2.
A series of Eu2+-activated Ba2Mg(BO3)2 yellow phosphors were prepared by a high temperature solid-state reaction. The phosphor emits intense yellow light under near ultraviolet excitation. Large Stokes shift can be attributed to the asymmetric nature of the Eu site and the lack of rigidity in the host. The concentration self-quenching mechanism of Ba2Mg(BO3)2:Eu2+ is d-d interaction and the critical transfer distance is calculated to be about 12.29 Å. Prototype light-emitting diodes were fabricated by coating the Ba2Mg(BO3)2:0.07Eu2+ phosphor onto ∼370 nm-emitting InGaN chips. The LEDs exhibit intense yellow-emitting under a forward bias of 20 mA. The results indicate that Eu2+-activated Ba2Mg(BO3)2 is a candidate as a yellow component for fabrication of near-UV white light-emitting diodes.  相似文献   

3.
A novel synthesis method was developed for the efficient red phosphor, Eu2+-activated Sr2Si5N8, by employing the strontium acetate as both the reducing agent and strontium source. The phase purity of final product was strongly dependent on the heating rate of the precursors. Sr2Si5N8:Eu2+ (2 at%) phosphor presented a broadband excitation spectrum in the range 300–500 nm, matching well with the blue emission (400/460 nm) of current InGaN light-emitting diodes (LEDs). The red emission peaking at 619 nm gave the relatively high (about 155%) intensity compared with the Y3Al5O12 (YAG) (P46-Y3) standard phosphor. In addition, the saturated chromatic coordinates (0.638, 0.359) allowed it a promising candidate as a red phosphor in white LEDs application for illumination or display.  相似文献   

4.
This paper synthesizes the Sr2SiO4:Eu^2+ phosphor by high temperature solid-state reaction. The emission spectrum of Sr2SiO4 : Eu^2+ shows two bands centred at 480 and 547 nm, which agree well with the calculation values of emission spectrum, and the location of yellow emission of Sr2SiO4 : Eu^2+ is influenced by the Eu^2+ concentration. The excitation spectrum for 547 nm emission has two bands at 363 and 402 nm. The emission spectrum of white light emitting diodes (w-LEDs) based on Sr2SiO4 : Eu^2+ phosphor + InGaN LED was investigated.  相似文献   

5.
In this paper, the Sr3Y2 (BO3)4:Eu3+ phosphor was synthesized by high temperature solid-state reaction method and the luminescence characteristics were investigated. The emission spectrum exhibits one strong red emission at 613nm corresponding to the electric dipole 5D0--7F2 transition of Eu3+ under 365nm excitation, this is because Eu3+ substituted for Y3+ occupied the non-centrosymmetric position in the crystal structure of Sr3Y2 (BO3)4. The excitation spectrum indicates that the phosphor can be effectively excited by ultraviolet (254nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu3+ concentration on the red emission of Sr3Y2 (BO3)4:Eu3+ was measured, the result shows that the emission intensities increase with increasing Eu3+ concentration, then decrease. The Commission Internationale del'Eclairage chromaticity (x, y) of Sr3Y2(BO3)4:Eu3+ phosphor is (0.640,0.355) at 15 mol% Eu3+.  相似文献   

6.
采用固相法制备了一种新型的白光LED用LiSrBO3∶Sm3+红色发光材料,并研究了材料的光谱特性.材料的激发与发射光谱显示其能够被404 nm近紫外光激发,发射599 nm红光,很好的符合近紫外光激发下白光LED的需要.研究了Sm3+浓度对材料发射强度的影响,发现Sm3+浓度为3 mol%时,强度最大.添加Na+或K+也可提高LiSrBO3∶Sm3+材料的发射强度.  相似文献   

7.
A novel deep-blue phosphor, Ba1.2Ca0.8SiO4:Ce3+, has been developed for white-light-emitting diodes. The phosphor exhibits two absorption bands at 280 and 325 nm, and an intense deep-blue emission peaking at 400 nm. With increasing Ce/Li concentrations, the lattice expands, and the emission peak is blueshifted. This correlation is explained in terms of the crystal field effect and the configurational coordinate diagram. This phosphor shows much higher thermal quenching temperature (225 °C) due to a weak electron-phonon interaction. Thus, it can be used as a sensitizer phosphor to excite other green or red phosphors, or a promising deep-blue phosphor for white-light-emitting diodes.  相似文献   

8.
黄平  崔彩娥  王森 《中国物理 B》2009,18(10):4524-4531
A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions. By tracing the formation process of the sol-gel, it is found that it is necessary to reduce the amount of NO3- by dropping ethanol into the solution for forming a stable and homogeneous sol-gel. Thermogravimetric and Differential Scanning Calorimeter Analysis, x-ray diffractionmeter, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the luminescent properties of the as-synthesised Sr3Al2O6:Eu2+, Dy3+. The results reveal that the Sr3Al2O6 crystallises completely when the combustion ash is sintered at 1250 C. The excitation and the emission spectra indicate that the excitation broadband lies mainly in a visible range and the phosphors emit a strong light at 618 nm under the excitation of 472 nm. The afterglow of (Sr0.94Eu0.03Dy0.03)3Al2O6 phosphors sintered at 1250 ℃ lasts for over 1000 s when the excited source is cut off.  相似文献   

9.
周天亮  宋振  宋西平  边柳  刘泉林 《中国物理 B》2010,19(12):127808-127808
Sr2ScAlO5:Eu2+,a red oxide phosphor with a perovskite-type structure,has been synthesized through a solid-state reaction and its luminescence properties have been investigated.An absorption band centering at 450 nm is observed from the diffuse reflection spectra and the excitation spectra,indicating that the phosphor can match perfectly with the blue light of InGaN light-emitting diodes.A broad red emission band at 620 nm is found from the emission spectra,originating from the 4f 6 5d-4f 7 transition of the Eu 2+ ions.The best doping content of Eu in this material is about 5%.Sr2ScAlO5:Eu2+is a highly promising red phosphor for use in white light-emitting diodes.  相似文献   

10.
采用高温固相法制备了LiBaBO3:Eu2+绿色发光材料.测量了Eu2+浓度为1mol%时样品的激发与发射光谱,其发射光谱为双峰宽谱,主峰分别为482和507nm,与理论计算值符合很好;监测482nm发射峰时,对应激发光谱的峰值为287和365nm,监测507nm发射峰时,对应的激发峰为365和405nm.研究了Eu2+浓度对材料发射光谱的影响,结果显示,随Eu2+浓度的增大,蓝、绿发射峰均发生了  相似文献   

11.
杨秋红  周洪旭  陆神洲 《中国物理 B》2010,19(2):20701-020701
Ce3+-doped yttrium lanthanum oxide (Y0.9La0.1)2O3 transparent ceramics is fabricated with nanopowders and sintered in H2 atmosphere. The spectral properties of Ce:(Y0.9La0.1)2O3 transparent ceramics are investigated. There appear two characteristic absorption peaks of Ce3+ ions at 230 nm and 400 nm, separately. It is found that Ce3+ ions can efficiently produce emission at 384 nm from (Y0.9La0.1)2O3 transparent ceramic host, while the emission is completely quenched in Re2O3 (Re=Y, Lu, La) host materials.  相似文献   

12.
CaZrSi2O7 (CZS), a modification of the thortveitite family, was prepared as a polycrystalline powder material by the conventional solid-state reaction method. Structural, thermal and photoluminescence (PL) properties of the prepared material were investigated in order to evaluate its potentiality. XRD patterns confirm the monoclinic phase of CaZrSi2O7: Eu2+ phosphors.. Emissions arising from transitions between the 5d and 4f orbital gaps of Eu2+ are manifested in the broadband excitation and emission spectra with major peaks at 363 and 512 nm, respectively. The excitation wavelength matches well with that of the emission of the ultraviolet-light emitting diode (UV-LED). Concentration quenching occurs when the Eu2+ concentration is beyond 0.05 and the dipole-dipole interaction was the reason for the corresponding quenching mechanism. The temperature dependence of emission intensity of CZS: Eu2+ phosphor was investigated and it showed better thermal stability than the standard YAG: Ce3+ phosphor.  相似文献   

13.
This letter reports the novel three emission bands based on phosphate host matrix, KBaPO4 doped with Eu2+, Tb3+, and Sm3+ for white light-emitting diodes (LEDs). The phosphors were synthesized by solid-state reaction and thermal stability was elucidated by measuring photoluminescence at higher temperatures. Eu2+-doped KBaPO4 phosphor emits blue luminescence with a peak wavelength at 420 nm under maximum near-ultraviolet excitation of 360 nm. Tb3+-doped KBaPO4 phosphor emits green luminescence with a peak wavelength at 540 nm under maximum near-ultraviolet excitation of 370 nm. Sm3+-doped KBaPO4 phosphor emits orange-red luminescence with a peak wavelength at 594 nm under maximum near-ultraviolet excitation of 400 nm. The thermal stabilities of KBaPO4:Ln (Ln=Eu2+, Tb3+, Sm3+), in comparison to commercially available YAG:Ce3+ phosphor were found to be higher in a wide temperature range of 25-300 °C.  相似文献   

14.
李盼来  徐征  赵谡玲  王永生  张福俊 《中国物理 B》2012,21(4):47803-047803
A yellow phosphor, Ca2BO3CI:Eu2+, is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observed. The emission spectrum shows an asymmetrical single intensive band centred at 573 nm, which corresponds to the 4f65dl→4f7 transition of Eu2+. Eu2+ ions occupy two types of Ca2+ sites in the Ca2BO3C1 lattice and form two corresponding emission centres, respectively, which lead to the asymmetrical emission of Eu2+ in Ca2BO3C1. The emission intensity of Eu2+ in Ca2BO3C1 is influenced by the Eu2+ doping concentration. Concentration quenching is discovered, and its mechanism is verified to be a dipole-dipole interaction. The value of the critical transfer distance is calculated to be 2.166 nm, which is in good agreement with the 2.120 nm value derived from the experimental data.  相似文献   

15.
A yellow phosphor, Sr3SiO5:Eu2+, was synthesized by a high temperature solid-state method. Sr3SiO5:Eu2+ exhibits a single yellow emission under the blue radiation excitation. However, Sr3SiO5:Eu2+ shows a two-peak emission under the ultraviolet radiation excitation when Eu2+ doping content is less than 0.01 mol. Moreover, the blue emission disappears and the yellow emission reaches the peak value when Eu2+ doping content is 0.01 mol. Namely, the energy transfer takes place between the Eu2+ activators, which is located at two different crystallographic sites in the Sr3SiO5. And the energy transfer mechanism is the dipole-dipole interaction.  相似文献   

16.
李杰  王育华  董其铮  刘吉地 《中国物理 B》2010,19(6):63301-063301
Y$_{0.75 - x}$GdxAl0.10BO$3:Eu$^{3+}0.10, 0.05R3+ ($R$=Sc, Bi) ($0.00 ≤ x ≤ 0.45$) powder samples are prepared by solid-state reaction and their luminescence properties are investigated. With the replacement of Y3+$ ions by Sc3+$ (or Bi3+)$ and Gd3+$ ions in (Y,Al)BO$3:Eu, the intensities of emission at 254 and 147~nm are remarkably improved, because Sc3+$ ions can absorb UV light and transfer the energy to Eu3+$ ions efficiently. Moreover, Gd3+$ and Bi$^{3 + }$ ions act as an intermediate ``bridge' between the sensitizer and the activator (Eu3+)$ in energy transfer to produce light in the (Y, Gd)BO$3:Bi3+$, Eu3+$ system more effectively. After doping an appropriate concentration of Gd3+$ into Y$_{0.50}$Gd$_{0.25}$Al0.10BO$3:Eu3+_{0.01}$, Bi$^{3+}_{0.05}$, the emission intensity reaches its maximum, which is nearly 110{\%} compared with the red commercial phosphor (Y,Gd)BO$3:Eu and better chromaticity coordinates (0.650, 0.350) are obtained.  相似文献   

17.
Single-phased Sr3B2SiO8:Eu3+ phosphor was prepared by a solid-state method at 1020 °C. The luminescence spectra showed that Sr3B2SiO8:Eu3+ phosphor can be effectively excited by near ultraviolet light (393 nm) and blue light (464 nm). When excited at 393 or 464 nm Sr3B2SiO8:Eu3+ exhibited the main emission peaks at 611 and 620 nm, which resulted from the supersensitive 5D07F2 transition of Eu3+. The luminescence intensity of Sr3B2SiO8:Eu3+ at 611 and 620 nm reached the maximum when the doping content of Eu3+ was 4.5 mol%. Its chromaticity coordinates (0.646, 0.354) were very close to the NTSC standard values (0.67, 0.33). Thus, Sr3B2SiO8:Eu3+ is considered to be an efficient red-emitting phosphor for long-UV InGaN-based light-emitting diodes.  相似文献   

18.
李盼来  王志军  杨志平  郭庆林 《物理学报》2011,60(4):47804-047804
采用高温固相法合成了Ba3Tb(BO3)3和Ba3Tb(BO3)3 ∶Ce3+两种绿色荧光粉,并研究了材料的发光性质.Ba3Tb(BO3)3材料呈多峰发射,发射峰位于439,493,547,589和629 nm,分别对应Tb3+5D关键词: 白光LED 3Tb(BO3)3')" href="#">Ba3Tb(BO3)3 3+')" href="#">Ce3+ 发光特性  相似文献   

19.
White light-emitting diodes using blue and yellow-orange-emitting phosphors   总被引:1,自引:0,他引:1  
Changyu Shen  Yi Yang  Jiangzhou Ming  Zhihai Xu 《Optik》2010,121(16):1487-1491
A blue-emitting phosphor, BaMgAl10O17:Eu2+ (BAM) and a yellow-orange phosphor, Ba2+-codoped Sr3SiO5:Eu2+ were prepared by the solid-state reaction. Excitation and emission spectra results showed that BAM and Ba2+-codoped Sr3SiO5:Eu2+ can be efficiently excited by near-ultraviolet (n-UV)-visible light from 250 to 440 nm. The effects of the doped-Eu2+ concentration in BAM and Ba2+-codoped Sr3SiO5:Eu2+ on the photoluminescence were investigated in detail. White light-emitting diodes (LED) was obtained by combining n-UV LED chip (GaN-based 380 nm emitting) with BaMgAl10O17:0.09Eu2+ and 0.1Ba2+-codoped Sr3SiO5: 0.2Eu2+ phosphors with the characteristic of color-rendering index of 86, CIE chromaticity coordinates (x,y) of (0.3216,0.3096), and color temperature Tc of 5700 K. As the current increases, the relative intensity simultaneously increases. The CIE chromaticity coordinates (x,y) of the white LED tends to decrease. The correlated color temperature Tc increases from 4100 to 7500 K and the color-rendering index Ra increases from 82 to 87 simultaneously.  相似文献   

20.
Blue–green emitting BaAlxOy:Eu2+,Dy3+ phosphor was synthesized by the combustion method. The influence of various parameters on the structural, photoluminescence (PL) and thermoluminescence (TL) properties of the phosphor were investigated by various techniques. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. In the PL studies, broad-band excitation and emission spectra were observed with major peaks at 340 and 505 nm, respectively. The observed afterglow is ascribed to the generation of suitable traps due to the presence of the co-doped Dy3+ ions. Though generally broad, the peak structure of the TL glow curves obtained after irradiation with UV light was non-uniform with suggesting the contribution to afterglow from multiple events at the luminescent centers. Further insight on the afterglow behavior of the phosphor was deduced from TL decay results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号