首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 396 毫秒
1.
借助声学头模考察了水平面不同语声源和噪声源位置对语言清晰度测量的影响,比较了有声学头模的双耳STIPA与无声学头模常规STIPA测量结果的差异,分别采用录听和现场测听方式进行了同等条件下的汉语听感清晰度主观评价实验,并分析了清晰度主客观结果的相关性。结果表明:声源位置对有声学头模的STIPA以及头模录制信号和真人现场实测的听感清晰度影响显著。无声学头模的STIPA更接近有声学头模时左右耳中较差的劣势耳的STIPA结果。单侧耳与语声源同侧或与噪声源异侧对应的单侧耳听感清晰度更高,语声源和噪声源重叠对应的双耳听感清晰度最低,声源分离可以显著提高双耳听感清晰度。头模录制信号和真人现场实测的听感清晰度与无声学头模STIPA不相关,与有声学头模的STIPA高度相关,其中单侧耳听感清晰度与该单侧耳STIPA高度相关,双耳听感清晰度与左右耳STIPA的较高值相关性最高。  相似文献   

2.
余光正  刘昱  谢菠荪 《声学学报》2017,42(3):348-360
近场头相关传输函数(HRTF)是双耳听觉科学研究和虚拟听觉重放应用的重要基础数据。近场HRTF测量系统要求具有高的测量效率、精度和重复性,以至于目前未见文献解决真人受试者的近场HRTF测量困难。本文研究并实现了一种计算机控制的近场HRTF的高效测量系统,并提出系统的快速校准方法,首先实现了真人受试者的近场HRTF测量。通过声学、机械与电子硬件和软件的综合设计,提高了测量效率。通过准确校准声源、受试者和双耳传声器的位置,提高了测量精确度和重复性。系统可用于1.0 m范围内不同声源距离的真人受试者以及人工头的近场HRTF测量,单个声源距离的全空间近场HRTF测量时间减少至20 min以内。测量结果表明,系统测量精度满足实际需求,可用于科学研究和个性化近场HRTF测量及数据库建立。   相似文献   

3.
杨青  马蕙  籍仙荣 《声学学报》2014,39(5):624-632
对实地双通道测量获得的道路交通噪声和铁路噪声信号样本进行了自相关函数和双耳自相关函数(Interaural CrossCorrelation Function)的分析。进而通过对噪声样本时间因子和空间因子的相关性分析、主成分分析和主观评价实验,得到了3个铁路噪声源特征参量物理因子和4个道路交通噪声源特征参量物理因子。发现与传统的声压级测量相比,表征声音信号时间特性和空间特性的这7个物理量可以更全面、准确地表征交通噪声的特性。在对道路噪声进行测量或分析时,掌握与声源视觉宽度和音调感相对应的物理因子以及双耳时延和初始能量,就可获悉与人的主观评价相一致的道路交通噪声特征信息;对铁路噪声而言,掌握与声源视觉宽度相对应的物理因子以及双耳时延和声音的重复性特征,就可以得到与入主观评价相一致的铁路噪声特征信息。综合道路噪声特征参量和铁路噪声特征参量可以发现,双耳时延和与声源视觉宽度相对应的物理因子是与人的主观反应最为一致的主成分指标,说明噪声中决定人的评价的最主要的因素是代表空间特征的信号因子。   相似文献   

4.
头相关传输函数(HRTF)是自由场情况下点声源到双耳的声学传输函数,它包含了有关声源的主要空间信息,因而在双耳空间听觉的研究方面有非常重要的意义.作为HRTF的一个重要的应用,虚拟听觉则是近二十年发展起来的新技术,它利用HRTF进行信号处理,模拟出声波从声源到双耳的传输,从而在耳机或扬声器重放中虚拟出相应的空间听觉.虚拟听觉技术在有关听觉的科学实验、通信、多媒体与虚拟现实、家用声重放、室内声学设计等科学研究、工程技术、消费电子领域都有重要的应用价值.近十多年来,国际上有关HRTF和虚拟听觉技术的研究发展很快,已成为声学、信号处理、听觉等研究领域的热门与前沿课题,并已在众多的领域得到应用.  相似文献   

5.
无源声源深度估计一直是水声领域的一个难题。针对浅海波导中低频宽带脉冲声源深度估计问题,提出了利用单水听器接收信号中多阶简正模相干项能量与非相干项能量比值的特征匹配处理方法,不仅消除了声源未知激发谱的影响,而且由于在预先估计声源距离基础上实现对声源深度的独立估计,运算量小。同时,由于利用了实测数据与拷贝声场中具有相同简正模贡献的相干能量特征进行匹配,参数估计具有较高的稳健性。首先通过向量线性相关数学理论,在理想波导条件下讨论了简正模数目与源深估计单值性的关系,证明了仅利用两阶简正模时源深估计具有多值性,而声场含有三阶以上简正模时源深估计存在唯一解。进一步的仿真分析表明,当信噪比高于0 dB时源深估计结果的平均误差整体上在5 m之内。分析了水文参数、沉积层声学参数及声源距离失配时方法的鲁棒性。最后,利用浅海垂直阵采集的低频宽带脉冲实验数据对方法进行验证,声源深度估计结果绝对误差小于5 m的概率在79.1%以上。方法可推广应用于浅海水平或垂直基阵对低频宽带声源的深度估计。   相似文献   

6.
水下目标对幅度高斯相关海面环境噪声场扰动特性的研究   总被引:3,自引:0,他引:3  
理论探讨了水下目标受海面环境噪声场激发产生的散射场对海洋环境噪声场的扰动特性,基于幅度高斯型相关海面噪声源模型,利用任意声源分布声场的积分表达式和单极子源半无限空间格林函数的球面波展开式,获得了刚性球目标在海面单极子和偶极子源海洋环境噪声“照射”下的直达噪声场、散射噪声场、总噪声场,以及二接收点直达、散射和总噪声协方差的理论表达式,表明总噪声场除了和目标阻抗特性、接收点的方向有关外,还受到海面噪声源相关特性,以及直达与散射噪声场之间干涉的较大影响。数值计算结果给出较近距离范围内,刚球目标声学可见度约为4~5dB,并指出在海洋环境噪声场中,刚球目标散射的方向特性明显不同于平面波入射。   相似文献   

7.
为了降低反演参数空间的维数,常利用正交经验函数(EOF)来构建声速剖面.然而,EOF方法的样本依赖性使之难以用于缺乏现场实测数据的海域.本文提出一种全新的利用历史数据而不依靠现场实时数据即可获得的声速剖面展开基函数.基于水质子流体静力方程和物态方程,推导了在缺乏实时测量的情况下从历史数据获得水动力模式基函数(HMB)的办法.利用WOA13季节平均温盐数据获得代表内潮动力特征的HMB进行分析.较之EOF, HMB及其对应的投影系数与海洋动力特征直接相关并具有明确的物理含义.基于东中国海实验获得的CTD (conductance-temperature-depth)及宽带爆炸声源声信号数据,利用声速剖面重构以及匹配场声层析对HMB进行了分析,并与EOF进行对比研究.结果表明:HMB可以以较好的精度构建浅海声速剖面.在对现场实时测量依赖更小的情况下,基于HMB方法的声场预报及声层析结果与EOF方法一样好.HMB的获取更简单且直接关联海水的物理特性,该方法可在实时测量样本不足的海域有效替代EOF进行海洋动力现象的声学监测.  相似文献   

8.
In order to investigate the influence of dummy head on measuring speech intelligibility,the objective and subjective speech intelligibility evaluation experiments were respectively carried out for different spatial configurations of a target source and a noise source in the horizontal plane.The differences between standard STIPA measured without a dummy head and binaural STIPA measured with a dummy head were compared and the correlation of subjective speech intelligibility and objective STIPA was analyzed.It is showed that the position of sound source affects significantly on binaural STIPA and subjective intelligibility measured by a dummy head or measured in a real-life scenario.The standard STIPA is closer to the lower value of the two binaural STIPA values.The speech intelligibility is higher for a single ear which is on the same side with the target source or on the other side of the noise source.Binaural speech intelligibility is always the lowest when both target and noise sources are at the same place but once apart the speech intelligibility will increase sharply.It is also found that the subjective intelligibility measured by a dummy head or measured in a real-life scenario is uncorrelated with standard STIPA,but correlated highly with STIPA measured with a dummy head.The subjective intelligibility of one single ear is correlated highly with STIPA measured at the same ear,and the binaural speech intelligibility is in well agreement with the higher value of the two binaural STIPA values.  相似文献   

9.
Speech intelligibility and localization in a multi-source environment.   总被引:1,自引:0,他引:1  
Natural environments typically contain sound sources other than the source of interest that may interfere with the ability of listeners to extract information about the primary source. Studies of speech intelligibility and localization by normal-hearing listeners in the presence of competing speech are reported on in this work. One, two or three competing sentences [IEEE Trans. Audio Electroacoust. 17(3), 225-246 (1969)] were presented from various locations in the horizontal plane in several spatial configurations relative to a target sentence. Target and competing sentences were spoken by the same male talker and at the same level. All experiments were conducted both in an actual sound field and in a virtual sound field. In the virtual sound field, both binaural and monaural conditions were tested. In the speech intelligibility experiment, there were significant improvements in performance when the target and competing sentences were spatially separated. Performance was similar in the actual sound-field and virtual sound-field binaural listening conditions for speech intelligibility. Although most of these improvements are evident monaurally when using the better ear, binaural listening was necessary for large improvements in some situations. In the localization experiment, target source identification was measured in a seven-alternative absolute identification paradigm with the same competing sentence configurations as for the speech study. Performance in the localization experiment was significantly better in the actual sound-field than in the virtual sound-field binaural listening conditions. Under binaural conditions, localization performance was very good, even in the presence of three competing sentences. Under monaural conditions, performance was much worse. For the localization experiment, there was no significant effect of the number or configuration of the competing sentences tested. For these experiments, the performance in the speech intelligibility experiment was not limited by localization ability.  相似文献   

10.
为了给双耳听力设备佩戴者带来更好的语音可懂度,提出了一种利用双耳时间差与声级差的近场语音增强算法,该方法首先利用这两种差异来估计语音的功率谱和语音的相干函数,然后计算干扰噪声在左右耳间的头相关传输函数的比值,最后构造两个维纳滤波器。客观评价的参数显示该算法去噪效果优于对比算法而目标语音的时间差误差和声级差误差低于对比算法。主观的言语接受阈测试表明该方法能有效提高语音可懂度。结果表明,该算法在能够有效去除干扰噪声的同时,保留了目标语音的空间信息。   相似文献   

11.
Although many studies have shown that intelligibility improves when a speech signal and an interfering sound source are spatially separated in azimuth, little is known about the effect that spatial separation in distance has on the perception of competing sound sources near the head. In this experiment, head-related transfer functions (HRTFs) were used to process stimuli in order to simulate a target talker and a masking sound located at different distances along the listener's interaural axis. One of the signals was always presented at a distance of 1 m, and the other signal was presented 1 m, 25 cm, or 12 cm from the center of the listener's head. The results show that distance separation has very different effects on speech segregation for different types of maskers. When speech-shaped noise was used as the masker, most of the intelligibility advantages of spatial separation could be accounted for by spectral differences in the target and masking signals at the ear with the higher signal-to-noise ratio (SNR). When a same-sex talker was used as the masker, the intelligibility advantages of spatial separation in distance were dominated by binaural effects that produced the same performance improvements as a 4-5-dB increase in the SNR of a diotic stimulus. These results suggest that distance-dependent changes in the interaural difference cues of nearby sources play a much larger role in the reduction of the informational masking produced by an interfering speech signal than in the reduction of the energetic masking produced by an interfering noise source.  相似文献   

12.
Spatial unmasking of speech has traditionally been studied with target and masker at the same, relatively large distance. The present study investigated spatial unmasking for configurations in which the simulated sources varied in azimuth and could be either near or far from the head. Target sentences and speech-shaped noise maskers were simulated over headphones using head-related transfer functions derived from a spherical-head model. Speech reception thresholds were measured adaptively, varying target level while keeping the masker level constant at the "better" ear. Results demonstrate that small positional changes can result in very large changes in speech intelligibility when sources are near the listener as a result of large changes in the overall level of the stimuli reaching the ears. In addition, the difference in the target-to-masker ratios at the two ears can be substantially larger for nearby sources than for relatively distant sources. Predictions from an existing model of binaural speech intelligibility are in good agreement with results from all conditions comparable to those that have been tested previously. However, small but important deviations between the measured and predicted results are observed for other spatial configurations, suggesting that current theories do not accurately account for speech intelligibility for some of the novel spatial configurations tested.  相似文献   

13.
Although the speech transmission index (STI) is a well-accepted and standardized method for objective prediction of speech intelligibility in a wide range of environments and applications, it is essentially a monaural model. Advantages of binaural hearing in speech intelligibility are disregarded. In specific conditions, this leads to considerable mismatches between subjective intelligibility and the STI. A binaural version of the STI was developed based on interaural cross correlograms, which shows a considerably improved correspondence with subjective intelligibility in dichotic listening conditions. The new binaural STI is designed to be a relatively simple model, which adds only few parameters to the original standardized STI and changes none of the existing model parameters. For monaural conditions, the outcome is identical to the standardized STI. The new model was validated on a set of 39 dichotic listening conditions, featuring anechoic, classroom, listening room, and strongly echoic environments. For these 39 conditions, speech intelligibility [consonant-vowel-consonant (CVC) word score] and binaural STI were measured. On the basis of these conditions, the relation between binaural STI and CVC word scores closely matches the STI reference curve (standardized relation between STI and CVC word score) for monaural listening. A better-ear STI appears to perform quite well in relation to the binaural STI model; the monaural STI performs poorly in these cases.  相似文献   

14.
When speech is in competition with interfering sources in rooms, monaural indicators of intelligibility fail to take account of the listener's abilities to separate target speech from interfering sounds using the binaural system. In order to incorporate these segregation abilities and their susceptibility to reverberation, Lavandier and Culling [J. Acoust. Soc. Am. 127, 387-399 (2010)] proposed a model which combines effects of better-ear listening and binaural unmasking. A computationally efficient version of this model is evaluated here under more realistic conditions that include head shadow, multiple stationary noise sources, and real-room acoustics. Three experiments are presented in which speech reception thresholds were measured in the presence of one to three interferers using real-room listening over headphones, simulated by convolving anechoic stimuli with binaural room impulse-responses measured with dummy-head transducers in five rooms. Without fitting any parameter of the model, there was close correspondence between measured and predicted differences in threshold across all tested conditions. The model's components of better-ear listening and binaural unmasking were validated both in isolation and in combination. The computational efficiency of this prediction method allows the generation of complex "intelligibility maps" from room designs.  相似文献   

15.
Bilateral cochlear implant (BI-CI) recipients achieve high word recognition scores in quiet listening conditions. Still, there is a substantial drop in speech recognition performance when there is reverberation and more than one interferers. BI-CI users utilize information from just two directional microphones placed on opposite sides of the head in a so-called independent stimulation mode. To enhance the ability of BI-CI users to communicate in noise, the use of two computationally inexpensive multi-microphone adaptive noise reduction strategies exploiting information simultaneously collected by the microphones associated with two behind-the-ear (BTE) processors (one per ear) is proposed. To this end, as many as four microphones are employed (two omni-directional and two directional) in each of the two BTE processors (one per ear). In the proposed two-microphone binaural strategies, all four microphones (two behind each ear) are being used in a coordinated stimulation mode. The hypothesis is that such strategies combine spatial information from all microphones to form a better representation of the target than that made available with only a single input. Speech intelligibility is assessed in BI-CI listeners using IEEE sentences corrupted by up to three steady speech-shaped noise sources. Results indicate that multi-microphone strategies improve speech understanding in single- and multi-noise source scenarios.  相似文献   

16.
The "cocktail party problem" was studied using virtual stimuli whose spatial locations were generated using anechoic head-related impulse responses from the AUDIS database [Blauert et al., J. Acoust. Soc. Am. 103, 3082 (1998)]. Speech reception thresholds (SRTs) were measured for Harvard IEEE sentences presented from the front in the presence of one, two, or three interfering sources. Four types of interferer were used: (1) other sentences spoken by the same talker, (2) time-reversed sentences of the same talker, (3) speech-spectrum shaped noise, and (4) speech-spectrum shaped noise, modulated by the temporal envelope of the sentences. Each interferer was matched to the spectrum of the target talker. Interferers were placed in several spatial configurations, either coincident with or separated from the target. Binaural advantage was derived by subtracting SRTs from listening with the "better monaural ear" from those for binaural listening. For a single interferer, there was a binaural advantage of 2-4 dB for all interferer types. For two or three interferers, the advantage was 2-4 dB for noise and speech-modulated noise, and 6-7 dB for speech and time-reversed speech. These data suggest that the benefit of binaural hearing for speech intelligibility is especially pronounced when there are multiple voiced interferers at different locations from the target, regardless of spatial configuration; measurements with fewer or with other types of interferers can underestimate this benefit.  相似文献   

17.
The auditory system takes advantage of early reflections (ERs) in a room by integrating them with the direct sound (DS) and thereby increasing the effective speech level. In the present paper the benefit from realistic ERs on speech intelligibility in diffuse speech-shaped noise was investigated for normal-hearing and hearing-impaired listeners. Monaural and binaural speech intelligibility tests were performed in a virtual auditory environment where the spectral characteristics of ERs from a simulated room could be preserved. The useful ER energy was derived from the speech intelligibility results and the efficiency of the ERs was determined as the ratio of the useful ER energy to the total ER energy. Even though ER energy contributed to speech intelligibility, DS energy was always more efficient, leading to better speech intelligibility for both groups of listeners. The efficiency loss for the ERs was mainly ascribed to their altered spectrum compared to the DS and to the filtering by the torso, head, and pinna. No binaural processing other than a binaural summation effect could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号