首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The paper proposes a heuristic approach to constructing exact solutions of the hydrodynamic equations based on the specificity of these equations. A number of systems of hydrodynamic equations possess the following structure: they contain a reduced system of n equations and an additional equation for an extra function w. In this case, the reduced system, in which w = 0, admits a Lie group G. Taking a certain partially invariant solution of the reduced system with respect to this group as a seed:rdquo; solution, we can find a solution of the entire system, in which the functional dependence of the invariant part of the seed solution on the invariants of the group G has the previous form. Implementation of the algorithm proposed is exemplified by constructing new exact solutions of the equations of rotationally symmetric motion of an ideal incompressible liquid and the equations of concentrational convection in a plane boundary layer and thermal convection in a rotating layer of a viscous liquid.  相似文献   

2.
Summary Let denote the congruence of null geodesics associated with a given optical observer inV 4. We prove that determines a unique collection of vector fieldsM() ( =1, 2, 3) and (0) overV 4, satisfying a weak version of Killing's conditions.This allows a natural interpretation of these fields as the infinitesimal generators of spatial rotations and temporal translation relative to the given observer. We prove also that the definition of the fieldsM() and (0) is mathematically equivalent to the choice of a distinguished affine parameter f along the curves of, playing the role of a retarded distance from the observer.The relation between f and other possible definitions of distance is discussed.
Sommario Sia la congruenza di geodetiche nulle associata ad un osservatore ottico assegnato nello spazio-tempoV 4. Dimostriamo che determina un'unica collezione di campi vettorialiM() ( =1, 2, 3) e (0) inV 4 che soddisfano una versione in forma debole delle equazioni di Killing. Ciò suggerisce una naturale interpretazione di questi campi come generatori infinitesimi di rotazioni spaziali e traslazioni temporali relative all'osservatore assegnato. Dimostriamo anche che la definizione dei campiM(), (0) è matematicamente equivalente alla scelta di un parametro affine privilegiato f lungo le curve di, che gioca il ruolo di distanza ritardata dall'osservatore. Successivamente si esaminano i legami tra f ed altre possibili definizioni di distanza in grande.


Work performed in the sphere of activity of: Gruppo Nazionale per la Fisica Matematica del CNR.  相似文献   

3.
The problem of classification of ordinary differential equations of the form y = f(x,y) by admissible local Lie groups of transformations is solved. Standard equations are listed on the basis of the equivalence concept. The classes of equations admitting a oneparameter group and obtained from the standard equations by invariant extension are described.  相似文献   

4.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

5.
Zusammenfassung Die Einführung von Zylinderkoordinaten (x, r, ) in die Gleichgewichtsbedingungen der Schnittkräfte bzw. in die Beziehungen zwischen Verzerrung und Verschiebungen am differentialen Schalenabschnitt ermöglicht die Berechnung des Spannungs- und Verschiebungszustandes von drehsymmetrischen Membranen mit beliebig gekrümmter Meridiankurve auf die Integration einer einfachen, linearen partiellen Differentialgleichung zweiter Ordnung für eine charakteristische FunktionF bzw. zurückzuführen. Eine geschlossene Lösung und damit eine Darstellung der Schnittkräfte und Verschiebungen durch explizite Formeln ist bei harmonischer Belastung cosn für zwei Funktionsgruppen=x 2 und=x –3 möglich. Im Sonderfall der drehsymmetrischen und der antimetrischen Belastung mitn=0 undn=1 gelten die Gleichungen der Schnitt- und Verschiebungsgrößen für eine beliebige Meridianfunktion=(). Die Betrachtungen der Randbedingungen offener Schalen bei harmonischer Belastung geben über die infinitesimalen Deformationen einer drehsymmetrischen Membran mit überall negativer Krümmung Aufschluß.  相似文献   

6.
7.
Nonlinear wave processes in shockloaded elastoplastic materials are modeled. A comparison of the results obtained with experimental data and numerical solutions of exact systems of dynamic equations shows that the model equations proposed qualitatively describe the stressdistribution evolution in both the elasticflow and plasticflow regions and can be used to solve one and twodimensional problems of pulsed deformation and fracture of elastoplastic media.  相似文献   

8.
The regular beam equations are solved analytically for the case of emission from an arbitrary surface in conditions of total space charge (-mode) and in a given external magnetic field H (§2) for temperature-limited emission (T-mode), in an external magnetic field H (§3); and for emission with nonzero initial velocity (§4). The emitter is taken as the coordinate surface x1=0 in an orthogonal system x1 (i = =1,2,3), while the current density J and field on it are given functions j(x2, x3), (x2, x3. The solution is written as series in (x1) with coefficients dependent on x2, x3, determined from recurrence relations. For emission in the -mode and H 0, =1/3; for temperature-limited emission, =1/2; with nonzero initial velocity, =1. The results are extended to the case of a beam in the presence of a moving background of uniform density (5).  相似文献   

9.
Stochastic subsurface transport theories either disregard local dispersion or take it to be constant. We offer an alternative Eulerian-Lagrangian formalism to account for both local dispersion and first-order mass removal (due to radioactive decay or biodegradation). It rests on a decomposition of the velocityv into a field-scale componentv , which is defined on the scale of measurement support, and a zero mean sub-field-scale componentv s , which fluctuates randomly on scales smaller than. Without loss of generality, we work formally with unconditional statistics ofv s and conditional statistics ofv . We then require that, within this (or other selected) working framework,v s andv be mutually uncorrelated. This holds whenever the correlation scale ofv is large in comparison to that ofv s . The formalism leads to an integro-differential equation for the conditional mean total concentration c which includes two dispersion terms, one field-scale and one sub-field-scale. It also leads to explicit expressions for conditional second moments of concentration cc. We solve the former, and evaluate the latter, for mildly fluctuatingv by means of an analytical-numerical method developed earlier by Zhang and Neuman. We present results in two-dimensional flow fields of unconditional (prior) mean uniformv . These show that the relative effect of local dispersion on first and second moments of concentration dies out locally as the corresponding dispersion tensor tends to zero. The effect also diminishes with time and source size. Our results thus do not support claims in the literature that local dispersion must always be accounted for, no matter how small it is. First-order decay reduces dispersion. This effect increases with time. However, these concentration moments c and cc of total concentrationc, which are associated with the scale below, cannot be used to estimate the field-scale concentrationc directly. To do so, a spatial average over the field measurement scale is needed. Nevertheless, our numerical results show that differences between the ensemble moments ofc and those ofc are negligible, especially for nonpoint sources, because the ensemble moments ofc are already smooth enough.  相似文献   

10.
An interesting property of the flows of a binary mixture of neutral gases for which the molecular mass ratio =m/M1 is that within the limits of the applicability of continuum mechanics the components of the mixture may have different temperatures. The process of establishing the Maxwellian equilibrium state in such a mixture divides into several stages, which are characterized by relaxation times i which differ in order of magnitude. First the state of the light component reaches equilibrium, then the heavy component, after which equilibrium between the components is established [1]. In the simplest case the relaxation times differ from one another by a factor of *.Here the mixture component temperature difference relaxation time T /, where is the relaxation time for the light component. If 1, 1, so that T ~1, then for the characteristic hydrodynamic time scale t~1 the relative temperature difference will be of order unity. In the absence of strong external force fields the component velocity difference is negligibly small, since its relaxation time vt1.In the case of a fully ionized plasma the Chapman-Enskog method is quite easily extended to the case of the two-temperature mixture [3], since the Landau collision integral is used, which decomposes directly with respect to . In the Boltzmann cross collision integral, the quantity appears in the formulas relating the velocities before and after collision, which hinders the decomposition of this integral with respect to , which is necessary for calculating the relaxation terms in the equations for temperatures differing from zero in the Euler approximation [4] (the transport coefficients are calculated considerably more simply, since for their determination it is sufficient to account for only the first (Lorentzian [5]) terms of the decomposition of the cross collision integrals with respect to ). This led to the use in [4] for obtaining the equations of the considered continuum mixture of a specially constructed model kinetic equation (of the Bhatnagar-Krook type) which has an undetermined degree of accuracy.In the following we use the Boltzmann equations to obtain the equations of motion of a two-temperature binary gas mixture in an approximation analogous to that of Navier-Stokes (for convenience we shall term this approximation the Navier-Stokes approximation) to determine the transport coefficients and the relaxation terms of the equations for the temperatures. The equations in the Burnett approximation, and so on, may be obtained similarly, although this derivation is not useful in practice.  相似文献   

11.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

12.
The molecular theory of Doi has been used as a framework to characterize the rheological behavior of polymeric liquid crystals at the low deformation rates for which it was derived, and an appropriate extension for high deformation rates is presented. The essential physics behind the Doi formulation has, however, been retained in its entirety. The resulting four-parameter equation enables prediction of the shearing behavior at low and high deformation rates, of the stress in extensional flows, of the isotropic-anisotropic phase transition and of the molecular orientation. Extensional data over nearly three decades of elongation rate (10–2–101) and shearing data over six decades of shear rate (10–2–104) have been correlated using this analysis. Experimental data are presented for both homogeneous and inhomogeneous shearing stress fields. For the latter, a 20-fold range of capillary tube diameters has been employed and no effects of system geometry or the inhomogeneity of the flow-field are observed. Such an independence of the rheological properties from these effects does not occur for low molecular weight liquid crystals and this is, perhaps, the first time this has been reported for polymeric lyotropic liquid crystals; the physical basis for this major difference is discussed briefly. A Semi-empirical constant in eq. (18), N/m2 - c rod concentration, rods/m3 - c * critical rod concentration at which the isotropic phase becomes unstable, rods/m3 - C interaction potential in the Doi theory defined in eq. (3) - d rod diameter, m - D semi-empirical constant in eq. (19), s–1 - D r lumped rotational diffusivity defined in eq. (4), s–1 - rotational diffusivity of rods in a concentrated (liquid crystalline) system, s–1 - D ro rotational diffusivity of a dilute solution of rods, s–1 - f distribution function defining rod orientation - F tensorial term in the Doi theory defined in eq. (7) (or eq. (19)), s–1 - G tensorial term in the Doi theory defined in eq. (8) - K B Boltzmann constant, 1.38 × 10–23 J/K-molecule - L rod length, m - S scalar order parameter - S tensor order parameter defined in eq. (5) - t time, s - T absolute temperature, K - u unit vector describing the orientation of an individual rod - rate of change ofu due to macroscopic flow, s–1 - v fluid velocity vector, m/s - v velocity gradient tensor defined in eq. (9), s–1 - V mean field (aligning) potential defined in eq. (2) - x coordinate direction, m - Kronecker delta (= 0 if = 1 if = ) - r ratio of viscosity of suspension to that of the solvent at the same shear stress - s solvent viscosity, Pa · s - * viscosity at the critical concentrationc *, Pa · s - v 1, v2 numerical factors in eqs. (3) and (4), respectively - deviatoric stress tensor, N/m2 - volume fraction of rods - 0 constant in eq. (16) - * volume fraction of rods at the critical concentrationc * - average over the distribution functionf(u, t) (= d 2u f(u, t)) - gradient operator - d 2u integral over the surface of the sphere (|u| = 1)  相似文献   

13.
We carry out a stochastic-perturbation analysis of a one-dimensional convection–dispersion-reaction equation for reversible first-order reactions. The Damköhler number, Da, is distributed randomly from a distribution that has an exponentially decaying correlation function, controlled by a correlation length, . Zeroth- and first-order approximations of the dispersion coefficient, D are computed from moments of the residence-time distribution obtained by solving a one-dimensional network model, in which each unit of the network represents a Darcy-level transport unit, and the solution of the transfer function in zeroth- and first-order approximations of the transport equation. In the zeroth-order approximation, the dispersion coefficient is calculated using the convection–dispersion-reaction equation with constant parameters, that is, perturbation corrections to the local equation are ignored. This zeroth-order dispersion coefficient is a linear function of the variance of the Damköhler number, (Da)2. A similar result was reported in a two-dimensional network simulation. The zeroth-order approximation does not give accurate predictions of mixing or spreading of a plume when Damköhler numbers, Da 1 and its variance, (Da)2 > 0.25 Da2. On the other hand, the first-order theory leads to a dispersion coefficient that is independent of the reaction parameters and to equations that do accurately predict mixing and spreading for Damköhler numbers and variances in the range (Da)2/Da0.3  相似文献   

14.
Illinois coal was ground and wet-sieved to prepare three powder stocks whose particle-size distributions were characterized. Three suspending fluids were used (glycerin, bromonaphthalene, Aroclor), with viscosities s that differed by a factor of 100 and with very different chemistries, but whose densities matched that of the coal. Suspensions were prepared under vacuum, with coal volume fractions that ranged up to 0.46. Viscosities were measured in a cone-and-plate over a shear rate range 10–3–102 s–1. Reduced viscosity r = /s is correlated in the high-shear limit ( ) with/ M, where M is the maximum packing fraction for the high-shear microstructure, to reveal the roles of size distribution and suspending fluid character. A new model that invokes the stress-dependence of M is found to correlate r well under non-Newtonian conditions with simultaneous prediction of yield stress at sufficiently high; a critical result is that stress and not governs the microstructure and rheology. Numerous experimental anomalies provide insight into suspension behavior.  相似文献   

15.
When blunt bodies are in hypersonic flight, a high-entropy layer of gas with nonzero vorticity is formed near their surface. The transverse gradients of the entropy, density, and gas velocity in the layer are high, which makes it necessary to take into account its absorption by the boundary layer of finite thickness . This vortex interaction is usually accompanied by an increase in the heat flux q and the frictional stress on the wall compared with their values as calculated in accordance with the classical scheme of a thin boundary layer, when the parameters on the outer edge of the boundary layer are set equal to the inviscid parameters on the body. This effect has been investigated on the side surface of slender (with angle 1 to the undisturbed flow) blunt bodies in a hypersonic stream [1–3]. It is shown in the present paper that the effect can have a stronger and even qualitative influence on the flow over blunt bodies with 1 if the radius of curvature Rs of the detached shock wave on the axis is small compared with the midsection radius R of the body. It is shown that the distributions of the heat fluxes with allowance for the vorticity of the inviscid shock layer are similar in the case of slightly blunt (r0/R 0) cones with half-angles less than a critical *.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 50–57, March–April, 1981.  相似文献   

16.
A generalization of the existence conditions for homogeneous flows of a rarefied monatomic gas mixture [2, 3] to the case where external forces are present is presented in [1]. Below we obtain for this case the solution of the Cauchy problem for the Boltzmann equation under free molecular (collisionless) conditions, when the collision integrals may be neglected (Knudsen number K 1). On the basis of this solution we construct a general solution for the equations of the kinetic moments of a Maxwellian monatomic gas mixture in the form of a series in inverse powers of K. Some additional remarks are made concerning the properties of the solutions of the second-order kinetic moment equations, and on the applicability of the Grad 13-moment equations and the Chapman-Enskog method [in particular, for the calculation of slow (Stokesian) motions of a gas mixture].The authors wish to thank M. N. Kogan and A. A. Nikol'skii for their comments.  相似文献   

17.
An asymptotic analysis of the Navier-Stokes equations is carried out for the case of hypersonic flow past wings of infinite span with a blunt leading edge when 0, Re , and M . Analytic solutions are obtained for an inviscid shock layer and inviscid boundary layer. The results of a numerical solution of the problems of vorticity interaction at the blunt edge and on the lateral surface of the wing are presented. These solutions are compared with the solution of the equations of a thin viscous shock layer and on the basis of this comparison the boundaries of the asymptotic regions are estimated.deceasedTranslated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 120–127, November–December, 1987.  相似文献   

18.
ONTHEUNIFICATIONOFTHEHAMILTONPRINCIPLESINNONHOLONOMICSYSTEMANDINHOLONOMICSYSTEM(梁立孚)(韦扬)ONTHEUNIFICATIONOFTHEHAMILTONPRINCIPL...  相似文献   

19.
Simultaneous measurements of stress relaxation and differential dynamic modulus were made at 268 K over a time scale of 10 to 1045 s for nearly monodisperse polybutadiene (M w =2.2x105, 1,2-structure 70%, M e =3600) and also one having coarse cross-linking (M c =29000). Static shear strain ranged from 0.1 to 2.0. In a long-time region (t> k ), the relaxation modulus G (; t) could be expressed by the product G (0; t) h (y). The observed h() agreed well with the Doi-Edwards theory without use of IA approximation. Both the cured and uncured samples showed initial drop of the differential storage modulus G (), ; t) followed by gradual recovery, but did not attain the value before shearing G (, ; t) for the uncured sample showed smaller values than that for the cured one in the whole measured time scale at the higher strain, confirming the two origins of nonlinear viscoelasticity of well entangled polymer; induced chain anisotropy and induced decrement in entanglement density. G (, ; t) curves for the cured sample agreed well with the BKZ predictions. But the curves for the uncured sample agreed well with the BKZ prediction only at the time scale of t< k . BKZ prediction showed significant upward deviations at t> k . Such the differences are discussed in terms of the two origins.Dedicated to Prof. John D. Ferry on the occasion of his 85th birthday.  相似文献   

20.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号