首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We present specific heat and thermal conductivity of the heavy fermion superconductor CeCoIn5 in the vicinity of the superconducting critical fieldH c2, measured with magnetic field in the plane of this quasi-2D compound and at temperatures down to 50 mK. The superconducting phase diagram and the first order nature of the superconducting phase transition at high fields close to a critical fieldH c2 indicate the importance of the Pauli limiting effect in CeCoIn5. In the same range of magnetic field we observe a second specific heat anomaly within the superconducting state, and interpret it as a signature of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting state. In addition, the thermal conductivity data as a function of field display a kink at a fieldH k below the superconducting critical field, which closely coincides with the low temperature anomaly in specific heat tentatively identified with the appearance of the FFLO superconducting state. The enhancement of thermal conductivity within the FFLO state calls for further theoretical investigations of the real space structure of the order parameter (and in particular, the structure of vortices) and of the thermal transport within the inhomogeneous FFLO state.  相似文献   

2.
We consider the proximity effect in multiterminal ferromagnet/superconductor (FSF) hybrid structures in which two or three electrodes are connected to a superconductor. We show that two competing effects take place in these systems: (i) pair breaking effects due to the response to the exchange field induced in the superconductor; (ii) a reduction of the superconducting order parameter at the interface that takes place already in NS junctions. We focus on this second effect that dominates if the thickness of the S layer is small enough. We consider several single-channel electrodes connected to the same site. We calculate the superconducting order parameter and the local density of state (LDOS). With two ferromagnetic electrodes connected to a superconductor we find that the superconducting order parameter in the ferromagnetic alignment is larger than the superconducting order parameter in the antiferromagnetic alignment ( > ), in agreement with [Eur. Phys. J. B 25, 373 (2002)]. If a third spin polarized electrode is connected to a superconductor we find that - can change sign as the transparency of the third electrode increases. This can be understood from the fact that the superconducting order parameter is reduced if pair correlations among the ferromagnetic electrodes increase. If the two ferromagnetic electrodes are within a finite distance we find Friedel oscillations in the Gorkov function but we still obtain > .  相似文献   

3.
Ferromagnetism and superconductivity are generally considered to be antagonistic phenomena in condensed matter physics. Here, we theoretically study the interplay between the ferromagnetic and superconducting orders in a recent discovered monolayered CoSb superconductor with an orthorhombic symmetry and net magnetization, and demonstrate the pairing symmetry of CoSb as a candidate of non-unitary superconductor with time-reversal symmetry breaking. By performing the group theory analysis and the first-principles calculations, the superconducting order parameter is suggested to be a triplet pairing with the irreducible representation of 3B2u, which displays intriguing nodal points and non-zero periodic modulation of Cooper pair spin polarization on the Fermi surface topologies. These findings not only provide a significant theoretical insight into the coexistence of superconductivity and ferromagnetism, but also reveal the exotic spin polarized Cooper pairing driven by ferromagnetic spin fluctuations in a triplet superconductor.  相似文献   

4.
We report (115)In nuclear magnetic resonance measurements of the heavy-fermion superconductor CeCoIn(5) in the vicinity of the superconducting critical field H(c2) for a magnetic field applied perpendicular to the ? axis. A possible inhomogeneous superconducting state, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, is stabilized in this part of the phase diagram. In an 11 T applied magnetic field, we observe clear signatures of the two phase transitions: the higher temperature one to the homogeneous superconducting state and the lower temperature phase transition to a FFLO state. We find that the spin susceptibility in the putative FFLO state is significantly enhanced as compared to the value in a homogeneous superconducting state. The implications of this finding for the nature of the low temperature phase are discussed.  相似文献   

5.
杨志红  杨永宏  汪军 《中国物理 B》2012,21(5):57402-057402
We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin-orbit coupling considered in one of the superconducting leads.It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface.The physical origin of this is that the Rashba spin-orbit coupling can induce a triplet order parameter in the s-wave superconductor.The interfacial spin Hall current dependences on the system parameters are also discussed.  相似文献   

6.
Chiral order of the Josephson-junction ladder with half a flux quantum per plaquette is studied by means of the exact diagonalization method. We consider an extreme quantum limit where each superconductor grain (order parameter) is represented by S=1/2 spin. So far, the semi-classical case, where each spin reduces to a plane rotator, has been considered extensively. We found that in the case of S=1/2, owing to the strong quantum fluctuations, the chiral (vortex lattice) order becomes dissolved except in a region, where attractive intrachain and, to our surprise, repulsive interchain interactions both exist. On the contrary, for considerably wide range of parameters, the superconductor (XY) order is kept critical. The present results are regarded as a demonstration of the critical phase accompanying chiral-symmetry breaking predicted for frustrated XXZ chain field-theoretically. Received 20 February 2000  相似文献   

7.
The problem of magnetic field penetration into a type-II high-temperature superconductor that is in the weakly pinned vortex-liquid phase is considered. A magnetic field on the superconductor boundary rises with time in the blow-up regime. A model hydrodynamic equation describing the magnetic induction distribution in the vortex-liquid phase for thermomagnetic motion of the flux is derived. Analytical expressions for the depth and rate of magnetic field penetration into the superconductor are found. It is demonstrated that these quantities depend on parameters of the problem: index of power n in the boundary regime characterizing the penetration rate of vortices into the superconducting half-space and a parameter describing the effect of random pinning forces and thermal fluctuations on the magnetic flux distribution.  相似文献   

8.
A superconductor with 4-fermion attraction, considered by Maćkowiak and Tarasewicz is modified by adding to the Hamiltonian a long-range magnetic interaction V between conduction fermions and localized distinguishable spin 1/2 magnetic impurities. V has the form of a reduced s-d interaction. An upper and lower bound to the system’s free energy density f(H, β) is derived and the two bounds are shown to coalesce in the thermodynamic limit. The resulting mean-field equations for the gap Δ and a parameter y, characterizing the impurity subsystem are solved and the solution minimizing f is found for various values of magnetic coupling constant g and impurity concentration. The phase diagrams of the system are depicted with five distinct phases: the normal phase, unperturbed superconducting phase, perturbed superconducting phase with nonzero gap in the excitation spectrum, perturbed gapless superconducting phase and impurity phase with completely suppressed superconductivity.  相似文献   

9.
T C Loya  S L Kakani 《Pramana》1994,43(1):41-54
A microscopic theory of interplay of superconductivity and antiferromagnetism in rare earth ternary systems is developed from first principles for less than half filledf atomic shells. Self consistent equations for the superconducting order parameter Δ and magnetic order parameter Γ, are derived using a Green’s function technique and equation of motion method. The theory is applied to explain the experimental results in the antiferromagnetic superconductor SmRh4B4. The present model explains true coexistence of superconductivity and antiferromagnetism and the suppression of superconductivity by antiferromagnetism. The behaviour of superconducting order parameter (Δ), magnetic order parameter (Γ), the specific heat, the density of states, free energy and critical field (H c) is also studied for the system SmRh4B4.  相似文献   

10.
We find that the upper critical field in a two-dimensional disordered superconductor can increase essentially at low temperatures. This happens due to the formation of local superconducting islands weakly coupled via the Josephson effect. The distribution of the superconducting islands is derived. It is shown that the value of the critical field is determined by the interplay of the proximity effect and quantum phase fluctuations. The shift of the upper critical field is connected with the pinning properties of a superconductor.  相似文献   

11.
J.A. Sauls 《物理学进展》2013,62(1):113-141
I review the principal theories that have been proposed for the superconducting phases of UPt3. The detailed H-T phase diagram places constraints on any theory for the multiple superconducting phases. Much attention has been given to the Ginzberg-Landau region of the phase diagram where the phase boundaries of three phases appear to meet at a tetracritical point. It has been argued that the existence of a tetracritical point for all field orientations eliminates the two-dimensional (2D) orbital representations coupled to a symmetry-breaking field (SBF) as a viable theory of these phases and favours either a theory based on two primary order parameters belonging to different irreducible representations that are accidentally degenerate, as described by Chen and Garg 1993, or a spin-triplet, orbital one-dimensional representation with non spin-orbit coupling in the pairing channel, as described by Machida and Ozaki 1991. I comment on the limitations of the models proposed so far for the superconducting phases of UPt3. I also find that a theory in which the order parameter belongs to an orbital 2D representation coupled to a SBF is a viable model for the phases of UPt3, based on the existing body of experimental data. Specifically, I show that the existing phase diagram (including an apparent tetracritical point for all field orientations), the anisotropy of the upper critical field over the full temperature range, the correlation between superconductivity and basal plane antiferromagnetism and the low-temperature power laws in the transport and thermodynamic properties can be explained qualitatively, and in many respects quantitatively, by an odd-parity E2u order parameter with a pair spin projection of zero along the ?c axis. The coupling of an antiferromagnetic moment to the superconducting order parameter acts as a SBF which is responsible for the apparent tetracritical point, in addition to the zero-field double transition. The new results presented here for the E2u representation are based on an analysis of the material parameters calculated within the Bardeen-Cooper-Schrieffer theory for the 2D representations, and a refinement of the SBF model given by Hess et al. (1989). I also discuss possible experiments to test the symmetry of the order parameter.  相似文献   

12.
The emergence of surface superconductivity in a type I superconductor is considered taking into account the surface free energy of the superconducting phase. It is shown that the disregard of the surface energy leads to a substantial error in determining the Ginzburg-Landau parameter from the measurements of the H c3 field.  相似文献   

13.
Many-body effects on the spin polarization are studied in an n channel inversion layer on Si (1 0 0) surface in a magnetic field parallel to the surface in random phase approximation. The spin polarization exhibits a discrete jump to a full polarization at the critical magnetic field in the low-density regime and the critical field is reduced considerably from that estimated by an extrapolation based on the zero-field susceptibility.  相似文献   

14.
Large superconducting Fe Se crystals of(001) orientation have been prepared via a hydrothermal ion release/introduction route for the first time. The hydrothermally derived Fe Se crystals are up to 10 mm×5 mm×0.3 mm in dimension. The pure tetragonal FeSe phase has been confirmed by x-ray diffraction(XRD) and the composition determined by both inductively coupled plasma atomic emission spectroscopy(ICP-AES) and energy dispersive x-ray spectroscopy(EDX). The superconducting transition of the Fe Se samples has been characterized by magnetic and transport measurements. The zero-temperature upper critical field H_(c2) is calculated to be 13.2–16.7 T from a two-band model. The normal-state cooperative paramagnetism is found to be predominated by strong spin frustrations below the characteristic temperature T_(sn), where the Ising spin nematicity has been discerned in the FeSe superconductor crystals as reported elsewhere.  相似文献   

15.
The temperature dependences of the superconducting transition of niobium nitride (NbN) thin films have been investigated via the first harmonic of the voltage in dc magnetic fields of up to 8 T. The temperature dependence of the second critical field of NbN has been determined. The parameter responsible for the effect of spin paramagnetism in this material and the temperature dependence of the upper critical field that describes well the experimental data have been found in terms of the Werthamer–Helfand–Hohenberg (WHH) theory. The key parameters of the superconductor have been estimated from the transport and optical measurements.  相似文献   

16.
In multi-band and inter-metallic materials superconductivity can be destroyed by applying external pressure in these systems. In many cases the critical temperature is driven continuously to zero, the superconducting to normal transition being associated with a superconducting quantum critical point (SQCP). In this paper we propose a model for this type of SQCP based on the increase of hybridization as pressure is applied in the material. We study a two-band superconductor with hybridization V between these bands. We use a BCS approximation and include both inter- and intra-band attractive interactions. We show that for negligible inter-band interactions, as hybridization increases there is a second order phase transition from a superconductor to a normal state at zero temperature at a critical value of the hybridization Vc. This SQCP can be reached by pressure, since this external parameter controls hybridization in the system. We also find discontinuous transitions at zero temperature and the appearance of a gapless superconducting (GS) phase in a certain range of hybridization in the case of inter-band interactions being dominant.  相似文献   

17.
The recent experimental results on the proximity effect in heterostructures composed of superconducting and ferromagnetic thin films are reviewed. First, the experimental observation and investigation of the spin screening effect, i.e., a spin polarization in the V layer developing in the superconducting state under the influence of a spin polarization of conduction electrons in the ferromagnetic layer are discussed. This effect was predicted theoretically by Bergeret et al. [F. S. Bergeret, A. F. Volkov, and K. B. Efetov, EPL 66, 111 (2004); Phys. Rev. B 69, 174504 (2004)]. Then, the progress concerning the experimental realization of the superconducting spin switch device based on the superconductor/ferromagnet proximity effect is presented.  相似文献   

18.
The critical behaviour of the electromagnetically coupled superconductor magnet system is investigated by means of a generalized mean field theory and a renormalization group analysis. We show that in the presence of a genuine anisotropy in systems with an additional pressure-like parameter (like concentration in pseudo-ternary ferromagnetic superconductors (FMS), e.g. Er1?x Ho x Rh4B4) the indirect coupling between superconducting and magnetic order parameters (i.e. gauge coupling) can lead to a peculiar kind of critical behaviour characterized by Lifshitz points (LP). These points (quite generally) occur as merging points of three phases: a (magnetically) disordered phase, a homogeneously ordered phase and a modulated phase. In FMS the latter phase may result from exchange screening by supercurrents. This unusual critical behaviour is found in two varieties:
  1. a regular LP which may occur on the lower transition line of a reentrant FMS
  2. a similar but slightly different critical point which we term modified Lifshitz point (MLP), and which is to be expected at the merging point of the upper and lower superconducting transition lines with the magnetic order disorder transition lines in the (x, T) phase diagrams of FMS's.
  相似文献   

19.
Under special conditions, a superconducting state where the order parameter oscillates in real space, the so-called FFLO state, is theoretically predicted to exist near the upper critical field, as first proposed by Fulde and Ferrell, and Larkin and Ovchinnikov. We report systematic measurements of the interlayer resistance in high magnetic fields to 45 T in the two-dimensional magnetic-field-induced organic superconductor lambda-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene. The resistance is found to show characteristic dip structures in the superconducting state. The results are consistent with pinning interactions between the vortices penetrating the insulating layers and the order parameter of the FFLO state. This gives strong evidence for an oscillating order parameter in real space.  相似文献   

20.
A correct Ginzburg-Landau free-energy functional for exchange (EX) and electromagnetic (EM) effects in a magnetic superconductor is derived. We study the second-order transition from the superconducting phase to the superconducting phase with helical spin order. The temperature TM of the onset of the helical ordering and the wave vector of the helix Q are calculated for some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号