首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   1篇
物理学   16篇
  2013年   1篇
  2011年   4篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
We study the effects of the RKKY interaction between magnetic impurities on the mesoscopic conductance fluctuations of a metal ring with dilute magnetic impurities. At sufficiently low temperatures and strong magnetic fields, the loss of electron coherence occurs mainly due to the scattering off rare pairs of strongly coupled magnetic impurities. We establish a relation between the dephasing rate and the distribution function of the exchange interaction within such pairs. In the case of the RKKY exchange interaction, this rate exhibits 1/B(2) behavior in strong magnetic fields. We demonstrate that the Aharonov-Bohm conductance oscillations may be used as a probe of the distribution function of the exchange interaction between magnetic impurities in metals.  相似文献   
2.
We use tools of the equilibrium statistical mechanics of disordered systems to study analytically the statistical properties of an ecosystem composed of N species interacting via random mutual interactions, as well as via deterministic self-interactions of order p>/=2. We show that the main effect of increasing the order of the interactions among the species is to make the system less competitive, in the sense that the fraction of extinct species is greatly reduced. In addition, we find that for p>2 there is a threshold value which gives a lower bound to the concentration of the surviving species, preventing then the existence of rare species and, consequently, increasing the robustness of the ecosystem to external perturbations.  相似文献   
3.
The existence of quantum spin liquids was first conjectured by Pomeranchuk some 70 years ago, who argued that frustration in simple antiferromagnetic theories could result in a Fermi-liquid-like state for spinon excitations. Here we show that a simple quantum spin model on a honeycomb lattice hosts the long sought for Bose metal with a clearly identifiable Bose surface. The complete phase diagram of the model is determined via exact diagonalization and is shown to include four distinct phases separated by three quantum phase transitions.  相似文献   
4.
We study the effects of disorder in the vicinity of the ferromagnetic transition in a diluted magnetic semiconductor in the strongly localized regime. We derive an effective polaron Hamiltonian, which leads to the Griffiths phase above the ferromagnetic transition point. The Griffiths-McCoy effects yield nonperturbative contributions to the dynamic susceptibility. We explicitly derive the long-time susceptibility, which has a pseudoscaling form, with the dynamic critical exponent being expressed through the percolation indices.  相似文献   
5.
We show how the time-continuous coherent state path integral breaks down for both the single-site Bose-Hubbard model and the spin-path integral. Specifically, when the Hamiltonian is quadratic in a generator of the algebra used to construct coherent states, the path integral fails to produce correct results following from an operator approach. As suggested by previous authors, we note that the problems do not arise in the time-discretized version of the path integral.  相似文献   
6.
Recent experiments on the organic compound kappa-(ET)2Cu2(CN)3 have provided a promising example of a two-dimensional spin liquid state. This phase is described by a two-dimensional spinon Fermi sea coupled to a U(1) gauge field. We study Kohn-Luttinger-like pairing instabilities of the spinon Fermi surface due to singular interaction processes with twice-the-Fermi-momentum transfer. We find that under certain circumstances the pairing instability occurs in odd-orbital-angular momentum or spin-triplet channels. Implications to experiments are discussed.  相似文献   
7.
We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters.  相似文献   
8.

Background

We examined development of auditory temporal integration and inhibition by assessing electrophysiological responses to tone pairs separated by interstimulus intervals (ISIs) of 25, 50, 100, 200, 400, and 800 ms in 28 children aged 7 to 9 years, and 15 adults.

Results

In adults a distinct neural response was elicited to tones presented at ISIs of 25 ms or longer, whereas in children this was only seen in response to tones presented at ISIs above 100 ms. In adults, late N1 amplitude was larger for the second tone of the tone pair when separated by ISIs as short as 100 ms, consistent with the perceptual integration of successive stimuli within the temporal window of integration. In contrast, children showed enhanced negativity only when tone pairs were separated by ISIs of 200 ms. In children, the amplitude of the P1 component was attenuated at ISIs below 200 ms, consistent with a refractory process.

Conclusions

These results indicate that adults integrate sequential auditory information into smaller temporal segments than children. These results suggest that there are marked maturational changes from childhood to adulthood in the perceptual processes underpinning the grouping of incoming auditory sensory information, and that electrophysiological measures provide a sensitive, non-invasive method allowing further examination of these changes.  相似文献   
9.
We consider an anisotropic gap superconductor in the vicinity of the disorder-driven quantum critical point. Starting with the BCS Hamiltonian, we derive the Ginzburg-Landau action, which is a critical theory with the dynamic critical exponent, z=2. This allows us to use the parquet method to calculate the nonperturbative effect of quantum superconducting fluctuations on thermodynamics. We derive a general expression for the fluctuation magnetic susceptibility, which exhibits a crossover from the logarithmic dependence, chi proportional, variantlndeltan, valid beyond the Ginzburg region to chi proportional, variantln(1/5)deltan valid in the immediate vicinity of the transition (where deltan is the deviation from the critical disorder concentration). These nonperturbative results may describe the quantum critical behavior of overdoped high-temperature cuprates, disordered p-wave superconductors, and conventional superconducting films with magnetic impurities.  相似文献   
10.
Time-lapse live cell imaging is a powerful tool for studying signaling network dynamics and complexity and is uniquely suited to single cell studies of response dynamics, noise, and heritable differences. Although conventional imaging formats have the temporal and spatial resolution needed for such studies, they do not provide the simultaneous advantages of cell tracking, experimental throughput, and precise chemical control. This is particularly problematic for system-level studies using non-adherent model organisms such as yeast, where the motion of cells complicates tracking and where large-scale analysis under a variety of genetic and chemical perturbations is desired. We present here a high-throughput microfluidic imaging system capable of tracking single cells over multiple generations in 128 simultaneous experiments with programmable and precise chemical control. High-resolution imaging and robust cell tracking are achieved through immobilization of yeast cells using a combination of mechanical clamping and polymerization in an agarose gel. The channel and valve architecture of our device allows for the formation of a matrix of 128 integrated agarose gel pads, each allowing for an independent imaging experiment with fully programmable medium exchange via diffusion. We demonstrate our system in the combinatorial and quantitative analysis of the yeast pheromone signaling response across 8 genotypes and 16 conditions, and show that lineage-dependent effects contribute to observed variability at stimulation conditions near the critical threshold for cellular decision making.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号