首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The structure and surface composition of binary oxides consisting of CrO(x) and VO(x) dispersed on alumina and their effects on the rate and selectivity of oxidative dehydrogenation (ODH) of propane were examined and compared with those for CrO(x) and VO(x) dispersed on alumina. VO(x) deposition on an equivalent CrO(x) monolayer on alumina and deposition of CrO(x) on an equivalent monolayer of VO(x) deposited on alumina led to CrVO(4) species during thermal treatment with concomitant reduction of Cr(6+) to Cr(3+). Autoreduction of Cr(6+) to Cr(3+) is also detected for CrO(x), even without the presence of VO(x). Infrared spectroscopy of NO adsorbed at 153 K probes the relative abundance of alumina and of V(5+), Cr(3+), and Cr(6+) at surfaces. This technique detects differences in the surface composition of VO(x)/CrO(x)()/Al(2)O(3) and CrO(x)/VO(x)/Al(2)O(3). The first of these samples is enriched in VO(x) relative to CrO(x) compared with the second sample. Consistent with this finding, VO(x)/CrO(x)/Al(2)O(3) and CrO(x)/VO(x)/Al(2)O(3) are distinguishable in their ODH activities and propene selectivities. The highest ODH activity and propene selectivity is observed for VO(x)/CrO(x)/Al(2)O(3), which exhibits a surface enriched in VO(x) and having a low surface concentration of Cr(6+).  相似文献   

2.
Isolated and uniform V(5+)-oxo species were grafted onto H-ZSM5 at V/Al(f) ratios of 0.2-1 via sublimation of VOCl(3) precursors. These methods avoid the restricted diffusion of solvated oligomers in aqueous exchange, which leads to poorly dispersed V(2)O(5) at external zeolite surfaces. Sublimation methods led to stable and active V-ZSM5 catalysts for oxidative dehydrogenation (ODH) reactions; they led to an order of magnitude increase in primary C(2)H(6) ODH rates compared with impregnated ZSM5 catalysts at similar V/Al(f) ratios and showed similar activity to impregnated VO(x)/Al(2)O(3). The structure of grafted V(5+)-oxo species was probed using spectroscopic and titration methods. Infrared spectra in the OH region and isotopic exchange of D(2) with residual OH groups showed that exposure to VOCl(3(g)) at 473 K led to stoichiometric replacement of H(+) by each (VOCl(2))(+) species. Raman spectra supported by Density Functional Theory electronic structure and frequency calculations showed that, at V/Al(f) < 0.5, hydrolysis and subsequent dehydration led to the predominant formation of (VO(2))(+) species coordinated to one Al site with single-site catalytic behavior (0.7-0.9 x 10(-3) mol C(2)H(4) V(-1) s(-1), 673 K). At higher V/Al(f) ratios, simulation of extended X-ray absorption fine structure spectra indicated that V(2)O(4)(2+) dimers coexisted with VO(2)(+) monomers and led to an enhancement in ODH rates as a result of bridging V-O-V (1.3 x 10(-3) mol C(2)H(4) V(-1) s(-1)). These V(5+)-oxo species form via initial reactions between VOCl(3(g)) and OH groups to form HCl((g)), hydrolysis of grafted (VOCl(2))(+) to form HCl((g)) and (VO(OH)(2))(+), and intramolecular and intermolecular condensation to form monomers and dimers, respective with the concurrent evolution of H(2)O. Raman and X-ray spectroscopies did not detect crystalline V(2)O(5) at V/Al(f) ratios of 0.2-1, but V(2)O(5) crystals were apparent in samples prepared by impregnation or physical mixtures of V(2)O(5)/H-ZSM5. Framework Al atoms and zeolite crystal structures are maintained during VOCl(3) treatment and subsequent hydrolysis; (27)Al and (29)Si MAS NMR showed that these synthetic protocols removes <10% of the framework Al atoms (Al(f)).  相似文献   

3.
A quantitative method based on UV-vis diffuse reflectance spectroscopy (DRS) was developed that allows determination of the fraction of monomeric and polymeric VO(x) species that are present in vanadate materials. This new quantitative method allows determination of the distribution of monomeric and polymeric surface VO(x) species present in dehydrated supported V(2)O(5)/SiO(2), V(2)O(5)/Al(2)O(3), and V(2)O(5)/ZrO(2) catalysts below monolayer surface coverage when V(2)O(5) nanoparticles are not present. Isolated surface VO(x) species are exclusively present at low surface vanadia coverage on all the dehydrated oxide supports. However, polymeric surface VO(x) species are also present on the dehydrated Al(2)O(3) and ZrO(2) supports at intermediate surface coverage and the polymeric chains are the dominant surface vanadia species at monolayer surface coverage. The propane oxidative dehydrogenation (ODH) turnover frequency (TOF) values are essentially indistinguishable for the isolated and polymeric surface VO(x) species on the same oxide support, and are also not affected by the Br?nsted acidity or reducibility of the surface VO(x) species. The propane ODH TOF, however, varies by more than an order of magnitude with the specific oxide support (ZrO(2) > Al(2)O(3) > SiO(2)) for both the isolated and polymeric surface VO(x) species. These new findings reveal that the support cation is a potent ligand that directly influences the reactivity of the bridging V-O-support bond, the catalytic active site, by controlling its basic character with the support electronegativity. These new fundamental insights about polymerization extent of surface vanadia species on SiO(2), Al(2)O(3), and ZrO(2) are also applicable to other supported vanadia catalysts (e.g., CeO(2), TiO(2), Nb(2)O(5)) as well as other supported metal oxide (e.g., CrO(3), MoO(3), WO(3)) catalyst systems.  相似文献   

4.
The structure, stability, and vibrational properties of isolated V2O5 clusters on the Al2O3(0001) surface have been studied by density functional theory and statistical thermodynamics. The most stable structure does not possess vanadyl oxygen atoms. The positions of the oxygen atoms are in registry with those of the alumina support, and both vanadium atoms occupy octahedral sites. Another structure with one vanadyl oxygen atom is only 0.12 eV less stable. Infrared spectra are calculated for the two structures. The highest frequency at 922 cm(-1) belongs to a V-O stretch in the V-O-Al interface bonds, which supports the assignment of such a mode to the band observed around 941 cm(-1) for vanadia particles on alumina. Removal of a bridging oxygen atom from the most stable cluster at the V-O-Al interface bond costs 2.79 eV. Removal of a (vanadyl) oxygen atom from a thin vanadia film on alpha-Al2O3 costs 1.3 eV more, but removal from a V2O5(001) single-crystal surface costs 0.9 eV less. Similar to the V2O5(001) surface, the facile reduction is due to substantial structure relaxations that involve formation of an additional V-O-V bond and yield a pair of V(IV)(d1) sites instead of a V(III)(d2)/V(V)(d0) pair.  相似文献   

5.
V2O5-MoO3-SiO2表面复合氧化物催化剂的制备与表征   总被引:8,自引:0,他引:8  
陶跃武  凌云  钟顺和 《催化学报》1999,20(2):129-133
采用表面改性法制备了V2O5-SiO2,MoO3-SiO2,V2O5-MoO3-SiO2复合氧化物催化剂,并用TPR和IR技术研究了催化剂的表面结构及V=O,M0=O的活性,同时用化学吸附IR技术研究了催化剂样品对异丁烷的化学吸附性能.实验结果表明:这些复合氧化物催化剂对异丁烷都有较高的化学吸附能力;SiO2能缓解表面Lewis碱位V=O和Mo=O的氧化能力,有利于选择氧化.  相似文献   

6.
用微型催化反应装置评价, 并结合X射线粉末衍射(XRD)、表面积和孔结构测试、程序升温还原(TPR)、氢化学吸附和热重分析等方法研究了负载型PtSn/γ-Al2O3, PtSn/MCM-41和PtSn/Al2O3/MCM-41催化剂的丙烷脱氢反应催化性能. 发现PtSn/Al2O3/MCM-41催化剂具有较PtSn/MCM-41催化剂高的丙烷脱氢反应活性和较PtSn/γ-Al2O3催化剂高的反应稳定性. 实验结果表明, 纯硅MCM-41载体表面的锡物种因与载体相互作用较弱故易被还原, 导致铂金属分散度和催化剂的丙烷脱氢活性较低. 用Al2O3修饰MCM-41可以增强Sn物种与Al2O3/MCM-41载体之间的相互作用, 提高PtSn/Al2O3/MCM-41催化剂铂金属分散度和丙烷脱氢催化活性. 并且, 积炭后的PtSn/Al2O3/MCM-41催化剂具有较高的铂金属表面裸露度, 故具有较高的丙烷脱氢反应稳定性. PtSn/Al2O3/MCM-41催化剂优良的丙烷脱氢催化性能可能不仅与Sn-载体Al2O3/MCM-41较强的相互作用有关, 而且与Al2O3/MCM-41载体的介孔结构有关.  相似文献   

7.
孙莉  杨振平  郭罕奇  裴文 《有机化学》2012,32(3):624-626
采用浸渍法制备了不同负载量的MoO3/Al2O3催化剂,讨论了MoO3,Al2O3和MoO3/Al2O3负载的催化剂作用下,利用H2O2进行硫醚氧化制亚砜的反应.结果显示MoO3/Al2O3催化剂负载量为20%时催化活性最高,原料转化率达100%,且没有副产物生成.将该方法应用到兰索拉唑前体的氧化反应中,收率达到80%.催化剂重复使用6次不失活.  相似文献   

8.
The investigation on MoO3 / Al2O3 sample or its modifiers with nickel,copper or potassium was performed using temperature programmed surface reaction(TPSR)technique and measurements of BET surface area. The results indicate that addition of nickel promotes the methane reduction,further the carburization,of MoO3,and addition of nickel also promotes the activation of methane over the surface of oxycarbide or carbide due to the increase of active sites per unit area and intrinsic activity of catalytic centers. This is favorable to the conversion of methane. The addition of copper promotes the methane reduction,further the carburization,of MoO3 to some extent,while the introduction of copper also accelerates the sintering of catalyst to a degree. Thus copper doped carbide catalyst exhibits its exceptionally catalytic performance. However,potassium prevents the MoO3 from reduction with methane,which is unfavorable to the carburization. Potassium also restrains methane from being activated over the surface of oxycarbide or carbide. MoO3 / Al2O3 doped with potassium is of lower specific area,which originates from its boosting sintering of catalyst. This caauses the inferior methane conversion over potassium doped carbide catalyst.  相似文献   

9.
The dispersion state and catalytic properties of anatase-supported vanadia species are studied by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), H2 temperature-programmed reduction (TPR) and the selective oxidation of o-xylene to phthalic anhydride. The almost identical values of the experimental dispersion capacity of V2O5 on anatase and the surface vacant sites available on the preferentially exposed (001) plane of anatase suggest that the highly dispersed vanadium cations are bonded to the vacant sites on the surface of anatase as derived by the incorporation model. When the loading amount of V2O5 is far below its dispersion capacity, the dispersed vanadia species might mainly consist of isolated VOx species bridging to the surface through V-O-Ti bonds. With the increase of V2O5 loading the isolated vanadia species interact with their nearest neighbors (either isolated or polymerized vanadia) through bridging V-O-V at the expenses of V-O-Ti bonds, resulting in the increase of the ra  相似文献   

10.
Vanadium oxide (1 wt %) supported on gamma-Al(2)O(3) was used to investigate the interface between the catalytically active species and the support oxide. Raman, UV-vis-NIR DRS, ESR, XANES, and EXAFS were used to characterize the sample in great detail. All techniques showed that an isolated VO(4) species was present at the catalyst surface, which implies that no V-O-V moiety is present. Surprisingly, a Raman band was present at 900 cm(-1), which is commonly assigned to a V-O-V vibration. This observation contradicts the current literature assignment. To further elucidate on potential other Raman assignments, the exact molecular structure of the VO(4) entity (1 V=O bond of 1.58 A and 3 V-O bonds of 1.72 A) together with its position relative to the support O anions and Al cation of the Al(2)O(3) support has been investigated with EXAFS. In combination with a structural model of the alumina surface, the arrangement of the support atoms in the proximity of the VO(4) entity could be clarified, leading to a new molecular structure of the interface between VO(4) and Al(2)O(3). It was found that VO(4) is anchored to the support oxide surface, with only one V-O support bond instead of three, which is commonly accepted in the literature. The structural model suggested in this paper leaves three possible assignments for the 900 cm(-1) band: a V-O-Al vibration, a V-O-H vibration, and a V-(O-O) vibration. The pros and cons of these different options will be discussed.  相似文献   

11.
甲烷的二氧化碳重整制合成气是近年来甲烷催化转化的一个重要方面,而所用催化剂的积炭问题仍是影响催化剂活性和寿命的主要因素之一.近年来,对催化剂表面的积炭形式有一些报道[1],但对积炭的种类及其与催化剂活性的关系很少有报道.本文从经低温焙烧的Co/Al2...  相似文献   

12.
CuO/Al2O3, CuO/CeO2-Al2O3, and CuO/La2O3-Al2O3 (denoted as Cu/Al, Cu/CeAl, and Cu/LaAl) catalysts were prepared by an impregnation method. CuO species and CuO/Al2O3 thermal solid-solid interaction were characterized by in situ XRD, Raman spectroscopy and H2-TPR techniques. For the Cu/Al catalyst, a CuAl2O4 phase exists between the CuO and Al2O3 layer and the CuO phase exists on the surface in both highly dispersed and bulk forms. For the Cu/CeAl catalyst, there is highly dispersed and bulk CuO on the surface, but most of the CuO has transferred into the internal layer of CeO2 as bulk CuO and CuAl2O4. For the Cu/LaAl catalyst, only bulk CuO is present on the surface of the catalyst and no CuAl2O4 is formed. The catalytic activity order for CO oxidation is Cu/CeAl>Cu/Al>Cu/LaAl. The highly dispersed CuO on the catalyst surface may be the active phase for CO oxidation. The results show that the addition of CeO2 not only promotes both the transference of CuO and the formation of CuAl2O4 but also favors the CO oxidation due to the association of highly dispersed CuO with CeO2, while La2O3 hinders the transference of CuO and the formation of CuAl2O4.  相似文献   

13.
A series of CoxMgxO/Al2O3/FeCrAl catalysts (x=0-1) were prepared. The structures of the catalysts were characterized using XRD, SEM, and TPR analyses. The catalytic activity of the catalysts for methane combustion was evaluated in a continuous flow microreactor. The results indicated that the active washcoats adhered well on the FeCrAl foils. The phases in the catalysts were Co--xMgxO solid solutions, α-Al2O3, and γ-Al2O3. The surface particle size of the catalysts varied with variations in the molar ratios of Co to Mg. The Co component of the Co1_xMgxO/Al2O3/FeCrAl catalysts played an important role in the catalytic activity for methane combustion. In the Co1-xMgxO/AluO3/FeCrAl series catalyst (x=0.2-0.8), the catalytic activity in terms of x was in the order of 0.5〉0.2〉0.8 under the experimental conditions. The presence of Mg in these catalysts could promote the thermal stability to a large extent. There were strong interactions between the Co1-xMgxO oxides and the AluO3/FeCrAl supports.  相似文献   

14.
与硫氧化物、氮氧化物、一氧化碳以及悬浮颗粒一样,大部分挥发性有机物(VOCs)污染大气环境.控制 VOCs排放有多种方法,其中催化氧化法是一种有效技术,关键在于获得高效催化剂.
  近年来,负载过渡金属和贵金属催化剂因具有比单纯负载贵金属和单纯负载过渡金属氧化物更好的催化性能而备受关注.在负载贵金属催化剂中,高比表面积载体负载 Pt, Pd或 Rh催化剂得到广泛而深入的研究,尽管这些催化剂成本较高,但是其对 VOCs氧化反应显示了很高的低温催化活性.众所周知,催化活性取决于贵金属和 VOCs的种类,不同负载贵金属催化剂对特定反应会表现出不同的催化活性.负载 Pt催化剂对长链碳氢化合物和芳香族化合物氧化反应表现出更高的活性.相对于负载贵金属催化剂,负载过渡金属氧化物催化剂不仅具有良好的氧化活性,而且价格低廉.迄今已发现许多过渡金属氧化物(如 Co3O4, Cr2O3和 MnO2等)对典型 VOCs氧化反应具有催化活性,其中 Co3O4的催化活性尤为突出.研究表明, Co3O4的性质和分散度是决定其性能的关键因素,制备方法、载体性质和过渡金属氧化物负载量对 Co3O4的物化性质具有重要影响,而且在负载 Pt催化剂中添加金属氧化物能改善其催化性能.尽管多孔氧化铝是一种常用的载体材料,但目前尚无文献报道三维有序大孔-介孔氧化铝负载 Co3O4和 Pt纳米粒子催化剂的制备及其对甲苯氧化反应的催化性能.
  本文采用聚甲基丙烯酸甲酯微球胶晶模板法、等体积浸渍法和聚乙烯醇保护的硼氢化钠还原法制备了三维有序大孔-介孔(3DOM Al2O3)负载 Co3O4和 Pt (xPt/yCo3O4/3DOM Al2O3, Pt的质量分数(x%)为0-1.4%, Co3O4的质量分数(y%)为0-9.2%)纳米催化剂.通过电感耦合等离子体原子发射光谱、X射线衍射、氮气吸附-脱附、扫描电子显微镜、透射电子显微镜、选区电子衍射、X射线光电子能谱及氢气程序升温还原等技术表征了催化剂的物化性质,利用固定床微型石英反应器评价了催化剂对甲苯氧化反应的催化活性.结果表明,xPt/yCo3O4/3DOMAl2O3催化剂具有多级孔结构(大孔孔径为180–200 nm,介孔孔径为4–6 nm),比表面积为94?102 m2/g.粒径为18.3 nm的 Co3O4纳米粒子和粒径为2.3?2.5 nm的 Pt纳米粒子均匀分散在3DOM Al2O3表面.在xPt/yCo3O4/3DOM Al2O3催化剂中,1.3Pt/8.9Co3O4/3DOM Al2O3拥有最高的 Oads浓度、最好的低温还原性和最高的甲苯氧化反应催化活性(当空速为20000mL g–1 h–1时,甲苯转化率达90%的反应温度为160oC).基于催化剂的活性数据和结构表征,我们认为,1.3Pt/8.9Co3O4/3DOM Al2O3优异的催化性能与其高分散的 Pt纳米粒子、高的 Oads浓度、好的低温还原性、Pt和 Co3O4纳米粒子间的强相互作用以及多级孔结构相关.  相似文献   

15.
甲烷无氧脱氢芳构化催化剂Mo/HZSM-5的研究   总被引:9,自引:1,他引:9  
催化剂Mo/HZSM-5在甲烷地氧脱氢芳构化反应中表现出很高的活性,用XRD,BET经表面,NH3-TPD及TPR等手段,对不抽提前后催化剂上的活性o的种进行了研究,XRD结果表明,Mo物种高度分散于筛表面,随着Mo担载量的提高,BET比表面积有所下降;但氨水抽提后,比表面积有很大程度的恢复,NH3-TPD结果表明,Mo物种优先占据分子筛中的强酸位。TPR结果显示出有MoO3晶相存在的催化剂较易被  相似文献   

16.
A silica-supported, lowly loaded vanadium oxide (V2O5/SiO2) photocatalyst promotes the photocatalytic epoxidation of propene with O2 at steady state in a flow reactor system. Very little deep oxidation of propene into CO2 takes place over V2O5/SiO2, in contrast to the results obtained over a TiO2 photocatalyst in which total oxidation is the main path. With each loading, the sums of the selectivities into propene oxide (PO) and propanal (PA) at steady state were almost the same. The monomeric VO4 tetrahedral species dispersed on SiO2 yield PO under UV irradiation. The less dispersed vanadium oxide species on SiO2 promote the isomerization of PO into PA. We utilized a flow reactor system in which the short contact time reduced the isomerization and resultant decomposition of PO over the catalyst surface.  相似文献   

17.
由于燃煤烟气、汽车尾气的过度排放 ,大气中NOx(其中NO占 90 %以上 )浓度已呈上升趋势。NO在阳光作用下 ,易形成光化学烟雾 ,危害人体的呼吸系统。NO还是破坏大气臭氧层和形成酸雨的前驱气体之一 ,破坏生态环境。催化分解和催化还原法是消除NO(deNOx)的主要方法。但由于实际环境中NO往往与某一种或几种还原性气体 (如CO、低碳烃 )共存 ,所以催化还原法是人们公认的有应用前景的deNOx 方法[1 ] 。近十几年来 ,国内外研究较多的deNOx 催化剂是Cu ZSM 5 ,其催化活性除受原料气中氧含量的影响外 ,很大程度上…  相似文献   

18.
采用X射线衍射, 低温氮气吸脱附, 氨气程序升温脱附和吡啶吸附红外光谱分析方法对不同活性组分负载量V2O5/Al2O3的性质进行了表征. 根据表面VOx单元密度, 推测V2O5负载量为20%-25% (w)对应着V2O5/Al2O3表面达单层覆盖状态; V2O5的负载使Al2O3表面Lewis酸量减少, 并出现Br?nsted酸, 对应着氧化态VOx单元中的V―OH; 随着负载量的增加, Brφnsted酸量增加至负载量为20%时达到最大值. 对V2O5/Al2O3中活性组分负载量对其氧化活化正庚烷催化裂解反应的影响进行了考察. 结果表明, 在V2O5负载量为20%-25%时,V2O5/Al2O3的引入对正庚烷在HZSM-5平衡剂上催化裂解反应的促进作用最明显, 此时VOx单元在V2O5/Al2O3表面形成单层覆盖状态, 可提供最大量的表面晶格氧, 因而对正庚烷具有最强的氧化活化作用; V2O5负载量继续增加形成体相的V2O5和AlVO4, 不利于晶格氧参与正庚烷的转化, 因而反应性能有所下降.  相似文献   

19.
水蒸汽对PtSn/Al2O3催化剂结构及反应性能的影响   总被引:3,自引:0,他引:3  
董文生  王浩静 《分子催化》1999,13(3):181-185
比较研究了Al2O3负载的铂及PtSn催化剂在氮气及水蒸汽稀释条件下的丙烷脱氢性能,并利用XPS及氢脉冲吸附对催化剂进行了表征。结果表明,水蒸汽可促使Pt/Al2O3催化剂的铂晶粒烧结。与在氮气氛中相比,在水蒸汽存在下反应显著提高了Pt/Al2O3的丙烷转化率,却降低了丙烯的选择性。另一方面,水蒸汽可调变PtSn/Al2O3催化剂的结构,破坏了PtSn/Al2O3中与锡相互作用的铂簇团结构。从而导  相似文献   

20.
Rates and selectivities for the oxidation of various organosulfur compounds with tert-butyl hydroperoxide were measured on CoAPO-5 (APO = aluminophosphate; Co/P = 0.05), Co/H-Y (Co/Al = 0.15), and MoO(x)/Al2O3 (15 % wt MoO3). Rates increased with increasing electron density at the sulfur atom (methyl phenyl sulfide>diphenyl sulfide>4-methyldibenzothiophene>2,5-dimethyl thiophene). Rates (per metal atom) were significantly higher on CoAPO-5 than on Co/H-Y, MoO(x)/Al2O3, or homogeneous Co acetate catalysts. Small amounts of sulfoxides (1-oxide) were detected on all catalysts at low reactant conversions, together with their corresponding sulfones; at higher conversions, only sulfones (1,1-dioxide) were detected, indicating that the oxidation of sulfoxides is much faster than for organosulfur reactants in the sequential oxidation pathways prevalent on these catalysts. Framework Co cations were not leached from CoAPO-5 during the oxidation of 4-methyldibenzothiophene, but most exchanged Co cations in H-Y and >20 % of Mo cations in MoO(x)/Al2O3 were extracted during these reactions. The fraction of redox-active Co cations in CoAPO-5 and Co/H-Y was measured by reduction-oxidation cycles using H2 and O2 and by UV-visible spectroscopy. This fraction was much larger in CoAPO-5 (0.35) than in Co/H-Y (0.01), consistent with the higher oxidation rates measured on CoAPO-5 and with the involvement of redox-active species in kinetically-relevant steps in catalytic oxidation sequences. Redox-active Co cations at framework positions within accessible channels are required for catalytic activity and structural stability during oxidative desulfurization, whether hydroperoxides are used as reactants or as intermediates (when O2 is used as the oxidant).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号