首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Microarray formats have become an important tool for parallel (or multiplexed) monitoring of biomolecular interactions. Surface-immobilized probes like oligonucleotides, cDNA, proteins, or antibodies can be used for the screening of their complementary targets, covering different applications like gene or protein expression profiling, analysis of point mutations, or immunodiagnostics. Numerous reviews have appeared on this topic in recent years, documenting the intriguing progress of these miniaturized assay formats. Most of them highlight all aspects of microarray preparation, surface chemistry, and patterning, and try to give a systematic survey of the different kinds of applications of this new technique. This review places the emphasis on optical technologies for microarray analysis. As the fluorescent read out of microarrays is dominating the field, this topic will be the focus of the review. Basic principles of labeling and signal amplification techniques will be introduced. Recent developments in total internal reflection fluorescence, resonance energy transfer assays, and time-resolved imaging are addressed, as well as non-fluorescent imaging methods. Finally, some label-free detection modes are discussed, such as surface plasmon microscopy or ellipsometry, since these are particularly interesting for microarray development and quality control purposes.  相似文献   

2.
We have developed a new time-resolved fluorometric (TRF) microarray detection system consisting of fluorescent NH2 nanosphere, TRF microarray detector and gamma-irradiated polystyrene chip. Using the TRF microarray detector, we detected 500 particles of the fluorescent nanosphere in one channel. Cross-talk fluorescence from the adjacent channels was little observed in the TRF microarray detector (<0.0004 %). The TRF microarray detection system was further applied for serum allergen-specific immunoglobulin E (IgE) multi-analyses. As a labeled tag antibody, an anti-human IgE Fab’ fragment-conjugated fluorescent nanosphere (Fab’ nanosphere) was prepared as described previously. As a chip surface appropriate for allergen immobilization, the polystyrene chip surface was modified by gamma irradiation. The immunoassay reactivity using the gamma-irradiated polystyrene chip was approximately 2.5-times improved compared with that of the non-treated polystyrene chip. Non-specific adsorption of the Fab’ nanosphere onto the gamma-irradiated polystyrene chip surface was very low level (<0.0009 %). In only 20 μl of serum, six allergen-specific IgEs could be simultaneously determined in one reaction well in fewer than 90 min. Good correlation curves were obtained between the microarray immunoassay and the CAP RAST fluoro-enzyme immunoassay (CAP/RAST FEIA) method (r>0.961). Reproducibility (CVs) of the microarray immunoassay was 8.6 % to 19.0 % (n=5).  相似文献   

3.
基于罗丹明染料的金属阳离子荧光探针   总被引:3,自引:0,他引:3  
罗丹明是以氧杂蒽为母体的碱性呫吨染料,具有优良的光学性质,如延伸到可见光区的吸收及荧光、高的荧光量子产率及大的摩尔吸光系数等,使其成为制备荧光探针的理想生色团。本文综述了近年来用于检测金属阳离子的罗丹明类荧光探针的研究进展,特别是对基于螺酰胺环“关-开”机理、荧光共振能量转移(FRET)机理和光诱导电子转移(PET)机理的罗丹明类铜离子、汞离子、铁离子荧光探针进行了系统的阐述,包括结构特征、检测水平和应用范围。最后提出了这类荧光探针面临的问题与发展趋势。  相似文献   

4.
爆炸物检测作为打击爆炸恐怖主义的重要措施之一,正日益彰显出广阔的应用前景.其中,静电纺荧光纳米纤维膜在爆炸物检测领域已展现出其独特的优点,可满足爆炸物检测所需的检测速度快、检测灵敏度高等要求.本文总结了近年来静电纺荧光纳米纤维膜在爆炸物检测中的代表性成果,简要介绍了爆炸物荧光传感机理、静电纺丝技术原理、静电纺荧光纳米纤维膜的制备方法及其爆炸物检测性能的影响因素;系统、重点梳理了有机小分子体系、共轭聚合物体系、聚集诱导发光体系及其他荧光材料体系的静电纺荧光纳米纤维膜在爆炸物检测中的应用,并针对该领域尚未解决的问题和未来可能的发展方向进行了展望,可为实际爆炸物检测中静电纺荧光纳米纤维膜的设计提供指导.  相似文献   

5.
Recent analytical innovations for nucleic acid detection have revolutionized the biological sciences. Single nucleic acid sequence detection methods have been expanded to incorporate multiplexed detection strategies. A variety of nucleic acid detection formats are now available that can address high throughput genomic interrogation. Many of these parallel detection platforms or arrays, employ fluorescence as the signaling method. Fluorescence-based assays offer many advantages, including increased sensitivity, safety and multiplexing capabilities, as well as the ability to measure multiple fluorescence properties. Multiplexed microarray platforms provide parallel detection capabilities capable of measuring thousands of simultaneous responses. This review will discuss both single target detection and microarray applications with a focus on gene expression and pathogenic microorganism (PM) detection.  相似文献   

6.
LIF detection is one of the most sensitive detection methods for CE. However, its application is limited because the analyte is usually required to be derivatized with a fluorescent label. As a result, LIF is seldom used to analyze active ingredients in plants. In this work, we introduce a rapid, simple, and sensitive method of nonaqueous CE (NACE) coupled with laser-induced native fluorescence detection for the simultaneous analysis of berberine, palmatine, and jatrorrhizine. This method skillfully utilizes the native fluorescence of these alkaloids and requires no troublesome fluorescent derivatization. As these alkaloids can fluoresce to some degree, they were simply detected by a commercially available 488 nm Ar+ laser. The native fluorescence of the analytes was greatly enhanced by nonaqueous media. Compared with the reported UV detection method, much lower LOD was achieved (6.0 ng/mL for berberine, 7.5 ng/mL for palmatine, and 380 ng/mL for jatrorrhizine). This method was successfully applied to analyze berberine, palmatine, and jatrorrhizine in two Chinese herbal medicines, Rhizoma coptidis and Caulis mahoniae.  相似文献   

7.
We report enhancement in the fluorescent signal of the carbocyanine dye Cy5 by using an engineered virus as a scaffold to attach >40 Cy5 reporter molecules at fixed locations on the viral capsid. Although cyanine dye loading is often accompanied by fluorescence quenching, our results demonstrate that organized spatial distribution of Cy5 reporter molecules on the capsid obviates this commonly encountered problem. In addition, we observe energy transfer from the virus to adducted dye molecules, resulting in a highly fluorescent viral nanoparticle. We have used this enhanced fluorescence for the detection of DNA-DNA hybridization. When compared with the most often used detection methods in a microarray-based genotyping assay for Vibrio cholerae O139, these viral nanoparticles markedly increased assay sensitivity, thus demonstrating their applicability for existing DNA microarray protocols.  相似文献   

8.
《化学:亚洲杂志》2017,12(22):2894-2898
A new concept of single microbead (MB)‐anchored fluorescent immunoassay (SMFIA) is proposed with greatly improved sensitivity. In the SMFIA, a single MB is manipulated as the reaction carrier so that the target‐tethered fluorescent immunocomplexes will be highly concentrated on one MB. By monitoring the enriched fluorescence signal on the single MB through imaging, highly sensitive target quantification can be realized just by employing the most common sandwich immunoreactions without requirement of further signal amplification routes. The high sensitivity of the SMFIA can fully meet the demand of current medical diagnosis. Furthermore, we have further advanced a fluorescence‐encoding mechanism for the proposed SMFIA which allows the simultaneous detection of multiple antigens in a single reaction. Sharing the distinct advantages of simple operation, high sensitivity and multiplexed detection capability, the SMFIA provides a general platform for the detection of various biomarkers.  相似文献   

9.
Binding parameters of metal complexes with albumins and DNA since the middle of 1990s are considered and summarized. The most widespread spectroscopic methods of estimation of binding parameters are discussed – direct fluorescent methods, indirect fluorescent methods (by fluorescence quenching parameters), and ways of estimation of binding constants by other optical spectroscopic methods. The methods and approaches to calculations used for the determination of binding constants are discussed. The data on the already found binding constants and kinetic parameters is systematized.  相似文献   

10.
碳点荧光探针的制备及其在食品分析中的应用   总被引:1,自引:0,他引:1  
碳点作为一种新型荧光碳纳米材料,具有优良的光学性能和小尺寸特性,以及良好的生物相容性、低毒性以及易于实现表面功能化等特点,是潜在的可以代替传统半导体量子点等荧光探针的良好选择.基于其独特的荧光特性和高灵敏度,碳点荧光探针在食品分析领域具有很好的应用潜力.本文对近年来荧光碳点的研究进展进行了综述,简述碳点的性能并对碳点的制备方法进行总结对比,重点介绍了碳点荧光探针在食品分析领域的应用,对目前碳点应用的限制进行了分析,对其发展前景和展望.  相似文献   

11.
DNA荧光标示研究进展   总被引:2,自引:0,他引:2  
DNA(脱氧核糖核酸)荧光标示技术是分子生物学中的一项重要技术,普遍应用于DNA测序、寡核苷酸杂交、荧光PCR等领域。本文综述了二十世纪八十年代以来DNA荧光标示方法(手动标示、自动标示)、标示试剂及其研究进展,介绍了DNA荧光标示的一些新的应用,并结合我国实际提出了有益的建议。  相似文献   

12.
荧光传感方法检测爆炸物的研究进展   总被引:1,自引:1,他引:0  
爆炸物检测是当前国际安全中迫切关注的问题之一。在过去的几十年中,大量的荧光传感材料用于荧光传感检测气态、液态和固态爆炸物见诸于报道。近年来,为了实现爆炸物的快速响应、高灵敏和高选择性的检测,研究工作者大力开发了各种新型荧光材料。这篇综述总结了近年来用于爆炸物检测的先进荧光材料,详尽、系统、重点地介绍了共轭聚合物、荧光小分子、超分子体系、具有聚集诱导发光效应的活性材料及静电纺丝纳米材料等各种荧光材料在爆炸物检测中的应用,展望了荧光传感方法在爆炸物检测领域的应用前景。  相似文献   

13.
张申  郭玉玉 《应用化学》2020,37(9):1069-1075
作为检测槲皮素的有效途径,在荧光法中如何通过简单的方法合成性能优良的荧光探针具有重要的意义。 本文以聚乙烯吡咯烷酮(PVP)为保护剂,抗坏血酸为还原剂,化学还原法合成PVP保护的分散性好、稳定性高、强荧光的铜纳米团簇(PVP-Cu NCs)。 样品表现出良好的水溶性,光稳定性和强离子稳定性。 通过紫外可见光谱(UV-Vis)、分子荧光光谱、透射电子显微镜(TEM)和X射线光电子能谱分析(XPS)对铜纳米团簇的光学性质和结构进行了分析。 结果表明:该铜纳米团簇的最大激发和发射波长分别为366和429 nm,平均粒径大小为2 nm。 基于槲皮素对该铜纳米团簇的猝灭作用,构建了一种可用于检测槲皮素的荧光传感器。 该传感体系检测槲皮素的线性范围为0.1~0.9 μmol/L和15~60 μmol/L,检测限为0.053 μmol/L(S/N=3)。 该传感器对槲皮素的检测具有很高的灵敏度和良好的选择性,可用于实际样品中槲皮素的检测。  相似文献   

14.
李冲  陈颖  谢诺华  刘俊霞  范成  周岐元  朱明强 《应用化学》2017,34(12):1379-1402
二芳基乙烯荧光分子开关因具有优良的抗疲劳性和双稳态特征而被广泛地研究与应用,亲水化成为其作为荧光开关探针走向应用的关键点之一。本文综述了亲水性二芳基乙烯荧光分子开关当前的研究进展,归纳了实现亲水性的几种重要途径和结构,分析了各种亲水化方法的优缺点,并着重介绍了亲水性二芳基乙烯荧光分子开关作为荧光开关探针在化学传感、生物传感、生物成像以及超分辨成像等领域的应用现状,并指出当前应用研究中存在的一些问题,同时也对其未来的应用前景进行了展望。  相似文献   

15.
As one of efficient analytes, fluorescent microspheres have shown much usability on many biochemical and biomedical processes. Recent applications with fluorescent microspheres have included cytokine quantitation, single nucleotide polymorphism genotyping, phosphorylated protein detection, and characterization of the molecular interaction of nuclear receptors. These,coupled with the rapid advances in molecular biology and synthesis techniques of drugs, have presented a basis for drug screening in a high-throughput format. Based on fluorescent microspheres,earlier assay formats of HTS relied mainly on proximity-dependent energy transfer including scintillation proximity assay (SPA) (Amersham Pharmacia Biotech) and FlashPlatesTM (NEN Life Science Products, Boston, MA). Indeed, drug screening-based such fluorescent emission is still accounting for about 20~50% of current content of high-throughput screening (HTS). Now, SPA is almost a standard technique in common HTS-lab. In literature, SPA microspheres is generally prepared from inorganic scintillators such as yttrium silicate and hydrophobic polymers such as polyvinyl toluene. However, in HTS research, such microspheres often show the disadvantages of strong hydrophobicity and low quantum efficiency. The strong hydrophobicity is mainly attributed to the hydrophobic monomer, vinyl toluene. The low quantum efficiency can be as a result of low transparence of the polymer, polyvinyl toluene. Thus, the subsequent treatments for such microspheres, so as coat a polyhydroxy film to decrease the hydrophobicity, are actually considerably complicated.It has been well known that poly(methyl methacrylate) (PMMA), a good biocompatible polymer with not only adequate mechanical strength but also excellent transparence, can be regarded as an ideal candidate material for fluorescent matrix. In present study, methyl methacrylate as monomer and 2,5-diphenyloxazole (DPO) as fluorescent dye were used to the fluorescent microspheres. In guaranteeing the hydrophilicity of microsphere surfaces, dispersion polymerization was in common use (stabilizer, Polyvinyl pyrrolidone). As is apparent, with such a method in hand, one would normally find that almost no subsequent treatment for microspheres can be involved. Also such a novel fluorescent microspheres is a more suitable and the method used in present research is more practical method in comparison to common method. As the original work, the purposes of this article are to synthesize such fluorescent microspheres and probe the probable roles of synthesis conditions on microsphere synthesis. The effects of stabilizers, initiators, dispersion mediums, monomer content, and reaction temperature on the synthesis process and the particle size, as well as its panicle distribution have been shown. Also the probable role of fluorescent dye in the polymerization has been thermodynamicaily discussed.  相似文献   

16.
17.
In the first part of this paper, the need for analytical techniques capable of highly parallel and sensitive nucleic acid analysis, with the capability of achieving very low limits of detection (LODs) and of resolving small differences in concentration, is described. Whereas the requirement for performing simultaneously multi-analyte detection is solved by the approach of nucleic acid microarrays, requirements on sensitivity can often not be satisfied by classical detection technologies. Inherent limitations of conventional fluorescence excitation and detection schemes are identified, and the implementation of planar waveguides as analytical platforms for nucleic acid microarrays, with fluorescence excitation in the evanescent field associated with the guided excitation light, is proposed. The relevant parameters for an optimization of sensitivity are discussed.In the second part of this paper, the specific formats of our planar waveguide platforms, which are compatible with established industrial standard formats allowing for integration into industrial high throughput environments, are presented, as well as the dedicated optical system for fluorescence excitation and detection that we developed. In a direct comparison with a state-of-the-art scanner, it is demonstrated that the implementation of genomic microarrays on planar waveguide platforms allows for unprecedented, direct detection of low-abundant genes in limited amounts of sample. Otherwise, when using conventional fluorescence excitation and detection configurations, the detection of such low amounts of nucleic acids requires massive sample preparation and signal or target amplification steps.  相似文献   

18.
Biological applications of carbon dots   总被引:1,自引:0,他引:1  
Carbon dots (C-dots), since their first discovery in 2004 by Scrivens et al. during purification of single-walled carbon nanotubes, have gradually become a rising star in the fluorescent nanoparticles family, due to their strong fluorescence, resistance to photobleaching, low toxicity, along with their abundant and inexpensive nature. In the past decade, the procedures for preparing C-dots have become increasingly versatile and facile, and their applications are being extended to a growing number of fields. In this review, we focused on introducing the biological applications of C-dots, hoping to expedite their translation to the clinic.  相似文献   

19.
荧光碳点探针是近几年来发展起来的一种新型荧光探针,具有传统有机染料、荧光染色蛋白及一般荧光纳米材料无法比拟的独特优势,如具有良好的水溶性、化学惰性、低毒性、易于功能化、抗光漂白性、可调谐和生物相容性等优异性能,因而引起研究者的广泛关注。目前已发展水热法等近十种较为经济便捷的方法,可进行大规模的荧光碳点制备,在细胞功能研究及细胞表面和内部功能分子的探测、组织的成像、病菌的定位等方面得到了较为广泛的应用。笔者对近年来荧光碳点的合成方法、依赖于碳点尺寸和波长等性质的发光性能,以及荧光碳点在生物成像等方面的应用作一简要综述,并对其在药用植物病理方面的应用提出展望,期望为丰富荧光碳点在生物成像领域的应用提供一定的借鉴和参考。  相似文献   

20.
氧化石墨烯荧光传感器   总被引:1,自引:0,他引:1  
张昊  崔华 《化学进展》2012,24(8):1554-1559
氧化石墨烯因其独特的光学、表面、机械、电学及热学性质在诸多领域都具有良好的应用前景。利用氧化石墨烯能够有效猝灭荧光体(染料分子、量子点及上转换纳米材料)荧光的特性,结合相关生物分析技术,相继开发了各种荧光传感器。本文综述近年来氧化石墨烯荧光传感器的基本原理及研究进展,主要讨论氧化石墨烯荧光传感器在重金属离子、DNA、蛋白质及生物小分子的分析应用,并对该领域的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号