首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
聚苯胺/膨润土纳米复合材料的合成与表征   总被引:9,自引:0,他引:9  
通过嵌入手段设计与合成同时具有某些无机和有机物双重性能的新型材料-无机/有机纳米复合材料,是科学家们关注的课题[1].Inoue等人[2]采用蒙脱土吸附苯胺单体然后电氧化的方法制备了聚苯胺/蒙脱土(Pan/Mont)复合材料,由于Mont片体的表面吸附了苯胺,所合成的为聚合物包覆的复合材料,这样在一定的程度上影响了材料的各向异性.本文采用离子交换,洗涤除去吸附在粘土颗粒表面的单体,成功地合成了非包覆的聚苯胺/膨润土壤(Ben)层状纳米复合材料,并用FTIR等方法对材料进行了表征.该材料兼有粘土的离子交换性能和聚苯胺的良好…  相似文献   

2.
聚合物/层状无机物纳米复合材料因具有常规复合材料所没有的结构、形态及较常规聚合物基复合材料更优异的性能而引起人们的广泛关注.α-磷酸锆(α-ZrP)作为一种合成的结构规整的层状无机物,其离子交换容量(600mmol/100g)是粘土的6倍,并具有长径比可控和粒子尺寸分布较窄等特点,是制备聚合物/层状无机物纳米复合材料的优良基体.以往的研究工作主要集中于金属氧化物/α-ZrP层柱材料和聚电解质膜两类复合材料,有关聚合物/α-ZrP插层复合材料的研究报道较少.聚丙烯酰胺(PAM)是一种具有广泛用途的水溶性高分子,作为聚电解质,  相似文献   

3.
聚合物/层状硅酸盐纳米复合材料研究进展   总被引:133,自引:0,他引:133  
聚合物/层状硅酸盐(PLS)纳米复合材料是近10年迅速发展起来的研究交叉科学。由于聚合物纳米复合材料具有常规聚合物复合材料所没有的结构、形态以及较常规聚合物复合材料更优异的物理力学性能、耐热性和气体液体阻隔性能等,因而显示出重要的科学意义和应用前景。本文综述了聚合物/层状硅酸盐纳米复合材料的制备,结构表征和物理力学性能,对制务过程进行了热力学和动力学分析,最后对其应用前景进行了展望。  相似文献   

4.
一些无机微粒被广泛用做聚合物的增强材料,其中特别引起人们注意的是一种粘土,即蒙脱土(montmorillonite).蒙脱土具有层状结构,其特点一是微粒尺寸小,二是可以和多种单体发生插层聚合反应,给出聚合物/蒙脱土纳米复合材料[1~3].纳米复合材料指的是其基质中分散相的尺寸至少有一维小于100nm数量级的复合材料.由于其纳米尺度效应、大的比表面积以及强的界面相互作用,纳米复合材料的物理力学性能优于相同组分常规复合材料.因此,无论从基本理论研究角度还是从应用角度上看,对聚合物纳米复合材料的研究都…  相似文献   

5.
过去的十多年里,聚合物/层状硅酸盐纳米复合材料在制备、结构与性能方面的研究取得了长足的进步。一些聚合物基的纳米复合材料已实现工业生产,在汽车、家电和包装等领域得到应用。环境稳定性是聚合物材料应用的一个重要方面。本文从材料的耐候性、耐热性和阻燃性能的角度出发,评述了近年来聚合物/层状硅酸盐纳米复合材料在紫外光降解、热降解和燃烧性能方面的研究进展,以期对纳米复合材料的基础研究及应用开发有所裨益。  相似文献   

6.
剥离型硅橡胶/黏土纳米复合材料研究   总被引:10,自引:0,他引:10  
利用层状硅酸盐制备有机 无机纳米复合材料是当前人们研究的热点[1,2 ] ,这类材料具有较常规聚合物 无机填料复合材料无法比拟的优点 ,可以明显改善高分子材料的物理机械性能、热稳定性、气体阻隔性、阻燃性、导电性、光学性等 .一般来说 ,聚合物 层状硅酸盐 (Polymerlayeredsilicate ,PLS)纳米复合材料可分为插层型和剥离型两种类型 .插层型纳米复合材料即聚合物插入到硅酸盐层中 ,硅酸盐在近程仍保持原有的有序晶体结构 ,在远程则是无序的 .对弹性体而言 ,硅酸盐含量在插层型杂化材料中的含量比较高 ,力学性能…  相似文献   

7.
PTFE/纳米SiO2复合材料的制备及其力学性能   总被引:1,自引:0,他引:1  
聚合物/纳米级无机粒子复合材料是纳米材料中的一种具有重要价值的新型材料,可广泛应用于橡胶、塑料、纤维三大合成材料之中。采用纳米级无机粒子填充聚合物基复合材料,可以在材料的补强、增韧等改性中获得良好的效果。本文以纳米SiO2为填料,将其经过有机处理后,制备了FIFE/纳米SiO2复合材料,并研究了纳米SiO2的含量对PTFE复合材料性能的影响。  相似文献   

8.
聚丙烯酰胺(PAM)/层状无机物纳米复合材料相比于纯PAM具有更好的力学性能、超吸水性能、热稳定性能和气体阻隔性能等,是一种性能优异并在采油、农业和卫生学等领域有着广泛应用前景的新型聚合物基纳米复合材料。本文对近年来聚丙烯酰胺/层状无机物纳米复合材料的研究进展进行了综述。首先重点介绍了层状双氢氧化物(LDHs)在有机溶剂和水中剥离分散方面的研究进展,接着综述了PAM/LDH和PAM/粘土纳米复合材料的制备与结构表征,最后阐述了PAM/层状无机物纳米复合材料的流变性能、力学性能和超吸水性能等。  相似文献   

9.
无机纳米粒子在环氧树脂增韧改性中的应用   总被引:8,自引:0,他引:8  
张小华  徐伟箭 《高分子通报》2005,(6):100-104,112
无机纳米粒子能够给聚合物赋以卓越的综合性能,为此,纳米材料在聚合物改性中的应用已成为聚合物改性领域中的一个研究热点。本文就近年来在环氧树脂增韧改性中应用的无机纳米粒子的种类、环氧树脂/无机纳米复合材料的制备方法及其应用研究进展进行了综述。  相似文献   

10.
聚丙烯/层状硅酸盐纳米复合材料的制备、结构和性能   总被引:10,自引:0,他引:10  
聚丙烯/层状硅酸盐纳米复合材料可通过丙烯单体插层聚合、聚丙烯溶液插层和聚丙烯熔融插层等方法制备,得到插层型或剥离型纳米复合材料,形成了与传统填充型聚合物复合材料不同的微观结构,其机械性能,热性能,阻隔性能和流变性能等明显提高,由于聚丙烯的非极性及层状硅酸盐纳米复合材料制备方法的特殊性,该研究具有一定的理论价值。  相似文献   

11.
The nanopowders of Mg-Al carbonate layered double hydroxides (MgAl-LDH) were prepared via coprecipitation process. ZnO nanoparticles were homogeneously coated on the ceramic MgAl-LDH surface. After calcination at 500 ℃ for 4 h, X-ray diffraction and scanning electron microscopy were employed to investigate the crystal structure and morphology, respectively. It was demonstrated that ZnO nanoparticles were successfully prepared on ceramic MgAl-LDH support. The obtained nano-ZnO photocatalyst showed a high pho-tocatalytic degradation of malachite green. The enhanced photocatalytic property can be attributed to both high photocatalytic activity of ZnO and good adsorption behavior of ceramic MgAl-LDH, in which the aky structure of MgAl-LDH plays an important role.  相似文献   

12.
Potential flame retardants, MgAl-LDH and ammonium polyphosphate (APP), were added to neat polystyrene (PS) individually or in combinations at weight fractions no greater than 10%. Structural morphologies of MgAl-LDH and the corresponding PS nanocomposites were established via X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) and cone calorimetry were used to study the thermal stability and fire performance of the composites. Time to ignition is greatly reduced for PS composites when compared to the virgin polymer. Synergistic effects were observed in both TGA and cone calorimetry for formulations containing both MgAl-LDH and APP. Physical and chemical interactions between MgAl-LDH and APP are responsible for the observed synergy in thermal stability and fire performance.  相似文献   

13.
Layered double hydroxides (LDHs) are new nanofillers which exhibit improved thermal and flammability properties in various kinds of polymer matrices. These materials have certain advantages over conventional metal hydroxides and also layered silicates so far as the flame retardancy is concerned. In this article, flammability and thermal properties of the nanocomposite based on low density polyethylene (LDPE) and Mg-Al based layered double hydroxide (Mg-Al LDH) are reported in detail. The nanocomposites containing different LDH concentrations were prepared by melt-compounding using a tightly intermeshing co-rotating twin-screw extruder. The morphological analysis reveals an exfoliated/intercalated type LDH particle morphology in these nanocomposites. The thermogravimetric analysis (TGA) shows that even a small amount of LDH improves the thermal stability and onset decomposition temperature in comparison with the unfilled LDPE. The heat release rate (HRR) and its maximum (PHRR) during cone-calorimeter investigation are found to be reduced significantly with increasing LDH concentration. The nanocomposites not only exhibit reduced total heat released (measure of propensity to produce long duration fire), but also lower tendency to fast fire growth (measured by the ratio of PHRR and time of ignition). The limited oxygen index (LOI) and the dripping behavior are also improved with increasing LDH concentration.  相似文献   

14.
The development of nanocomposite photocatalyst based on layered double hydroxides (LDHs) associated with TiO2 was the subject of this research. The thermally activated Zn–Al LDHs were selected as catalyst support precursor because of their proven photocatalytic activity and therefore their possible contribution to overall activity of novel Ti–Zn–Al nanocomposite. The catalyst precursor (Zn–Al LDH) was synthesized by low supersaturation coprecipitation method, and its association with active TiO2 component targeting the formation of novel Ti–Zn–Al nanocomposite was achieved by wet impregnation. Simultaneous thermal analysis (TG–DTA) was used to investigate the thermal behavior of Zn–Al LDH and Ti–Zn–Al LDHs. Complementary, morphology, texture, and structure characterization was carried out. The photocatalytic test reaction was performed under UV light using the methylene blue degradation. The results confirmed a successful impregnation of TiO2 on catalyst support precursor Zn–Al–LDH followed by considerable change in morphology and structure of Zn–Al LDH precursor. It was concluded that the synergic effect between TiO2 and Zn–Al LDH precursor contributes to the overall photocatalytic activity.  相似文献   

15.
张书华  王成 《高分子科学》2016,34(5):542-551
MgAl-LDH(layered double hydroxides) were prepared with CO(NH_2)_2, NH_4 Cl and NH_3·H_2O by the coprecipitation method, respectively. Corresponding composite membranes were prepared by the coating method. LDHs were characterized by WAXS, CO_2-TPD and SEM. The morphology of the PVC/LDHs composite membranes were characterized by means of SEM. The thermal stability of the membranes was analyzed by air aging box and TGA-FTIR. The SEM results show that nano-particles can be compatible with poly(vinyl chloride)(PVC) matrix homogeneously by the stirring-ultrasound blend method with two steps. Furthermore, the air aging box results proved that MgAl-CO(NH_2)_2-LDH has the best effect on thermal stability of PVC. TGA-FTIR results show that MgAl-CO(NH_2)_2-LDH could adsorb more HCl that resulted from the degradation of PVC and improve the pyrolysis temperature of the first degradation stage by 15 K compared with PVC.  相似文献   

16.
N-substituted poly(p-phenylene terephthalamide)s (PPTA), such as N-alkylated, N-aralkylated, and N-carboxymethylated poly(p-phenylene terephthalamide), were synthesized from PPTA and the corresponding halides by the polymer reaction via the metalation reaction in a solution of sodium methylsulfinylcarbanion in dimethyl sulfoxide at low temperature. The introduction of various substitutional groups into the amide groups of PPTA increased their solubilities, but decreased their thermal stabilities compared with PPTA. The effects of various substitutional groups on the thermal properties and the solubilities are discussed. Liquid crystal formation was noticed for PPTA substituted with bulky groups such as 9-anthrylmethyl group.  相似文献   

17.
Zn2Al-layered double hydroxides (LDH) were intercalated with anions of the dyes Orange G, Orange II, and Methyl Orange by alkaline co-precipitation of aqueous solutions of zinc chloride and aluminum nitrate simultaneously in the presence of dye sodium salts. Transparent, homogeneous, and colored nanocomposite films were obtained by casting after dispersing the dye-intercalated LDHs (pigments) into commercial poly(vinyl alcohol) (PVA). The films were characterized by X-ray diffraction, ultraviolet–visible spectroscopy, thermal analysis (thermogravimetric analysis (TGA)) and differential thermal analysis (DTA)), and mechanical testing. Mechanical reinforcement of the PVA compounded with the dye-intercalated LDHs was achieved, and reasonable increases in Young’s modulus and ultimate tensile strength were observed with as little as 0.5% added filler, while larger amounts tended to decrease the reinforcement effect. These results demonstrate the onset of a new range of potential applications for layered double hydroxide intercalated with dyes in the preparation of polymer composite multifunctional materials.  相似文献   

18.
The nylon 6/MgAl layered double hydroxide (MgAl-LDH) nanocomposites have been prepared by melt intercalation of nylon 6 into the part organic dodecyl sulfate (DS) anion-modified MgAl(H-DS) interlayers. The structures and properties of MgAl(H-DS) and corresponding nanocomposites were characterized by ion chromotography, X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and cone calorimeter test (CCT). The nanoscale dispersion of MgAl(H-DS) layers in the nylon 6 matrix has been verified by the disappearance of d001 XRD diffraction peak of MgAl(H-DS) and the observation of TEM image. DSC tests evince that these exfoliated MgAl(H-DS) layers play the role of nucleating agents with strong heterogeneous nucleation effect on the crystallization of nylon 6 and increase its crystallization temperature over 12 °C with only 5 wt% MgAl(H-DS). TGA tests show that the effect of alkaline catalysis degradation from LDH on nylon 6 decreases the thermal stability of nylon 6/MgAl-LDH nanocomposites. The data from the cone calorimeter tests show that the HRR and MLR values of the sample with 5 wt% MgAl(H-DS) decrease considerably to 664 kW/m2 and 0.161 g/m2 s from 1064 kW/m2 and 0.252 g/m2 s of pure nylon 6, respectively. This kind of exfoliated nanocomposite is promising for the application of flame-retardant polymeric materials.  相似文献   

19.
The main objective of this work was to investigate the development of porosity in solid residues from the thermal decomposition of the polymer, poly(p-phenylene terephthalamide) (PPTA). PPTA chars were prepared at different temperatures and characterized by X-ray diffraction and physical adsorption of CO2 at 0 °C. The carbonization temperatures were selected on the basis of thermogravimetric analysis results. The effect of introducing an isothermal treatment at 500 °C on the characteristics of the resulting chars was also studied. It was found that this pre-treatment lowers the decomposition temperature of PPTA and yields a somewhat less ordered material than in the case of pyrolysis under a constant heating rate. The micropore volume increases with increasing heat treatment temperature for both series of samples. The mean micropore size decreases for the two series of chars until the 700-800 °C interval; above these temperatures, this evolution is reversed. The micropore volume of the samples submitted to the isothermal treatment is higher than when PPTA is treated under a constant heating rate. Likewise, the pore size distribution is more heterogeneous when the intermediate isothermal treatment at 500 °C is introduced during PPTA pyrolysis. Some differences between porosity development in chars from PPTA and other high thermal stability polymers were explained on the basis of different mechanistic features in polymer pyrolysis.  相似文献   

20.
We present a newly designed colorimetric sensor sensitive to pH value based on a gold nanocomposite composed of gold nanoparticles and pH-sensitive polymer{dodecylthioether end functionalized poly[2-(diethylamino) ethyl methacrylate], poly(DEAEMA)-DDT}. We have shown that this design can produce stable GNP precipitate under weakly basic condition(pH=7.5) and this precipitate can be dispersed in acidic solution(pH=4.0), due to the 2-(diethylamino) ethyl methacrylate protonated by H+. The precipitation-dispersion process is reversible and accompanied by distinct color change that are clearly visible to the naked eye. This development may have application in the controlled fabrication of reversible pH-sensitive nanostructures and/or devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号