首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
张翼  周平  潘銮凤  谢尚喆  孙敏  李文婷 《化学学报》2007,65(24):2935-2940
聚三羟基丁酸脂和聚三羟基己酸脂的共聚物(PHBHHx)是一种具有良好强度和韧性的生物可降解高分子材料, 可作为组织工程心脏瓣膜支架的选择材料之一. 但其生物相容性尚不甚理想. 为此, 本工作利用丝素蛋白修饰改性高分子多孔支架, 以提高支架的生物相容性. 并将人体平滑肌细胞接种在该复合支架上进行体外培养, 以证实改性效果. 其中, 用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)方法测试细胞生长, 评估复合支架的细胞相容性. 并用扫描电子显微镜观察细胞在支架上的生长形态. 结果显示, 丝素蛋白修饰改性后的复合支架更有利于细胞的粘附与生长, 平滑肌细胞在支架上表现出良好的生长形态. 这表明, 丝素能够改善多孔支架的生物相容性, 使PHBHHx/丝素蛋白复合物能更适宜作为组织工程心脏瓣膜的支架材料. 结果对于进一步研究细胞外间质在复合支架上的生长以及体外培养的组织重建有重要的参考意义.  相似文献   

2.
成骨肿瘤细胞在纳米氧化钛陶瓷表面的生物活性研究   总被引:1,自引:1,他引:0  
以羟基磷灰石和氧化镁为晶粒生长抑制剂制备的纳米氧化钛陶瓷为研究对象, 采用体外成骨细胞Ros17/28与材料复合培养的方法, 通过MTT法、荧光染色法和SEM细胞形貌观察等手段综合判断细胞在材料表面的活性, 以此评价纳米氧化钛陶瓷的生物活性. 结果表明, 以羟基磷灰石为晶粒生长抑制剂的氧化钛陶瓷晶体颗粒尺寸达到纳米级, 其生物活性超出了以氧化镁为晶粒生长抑制剂的氧化钛陶瓷和纯羟基磷灰石陶瓷, 具有优异的生物相容性, 是生物活性陶瓷.  相似文献   

3.
人体骨骼的晶体成分主要是纳米羟基磷灰石(n-HA),n-HA具有优良的生物相容性、骨传导性和骨结合能力,被广泛应用于硬组织修复材料中。本文综述了纳米羟基磷灰石在构建人体骨修复支架材料、骨替代材料和口腔医用材料方面的应用研究。  相似文献   

4.
将生物材料通过静电纺丝制备成的纳米纤维,具有比表面积大、空隙率高、生物相容性好等优点,因此得到广泛研究。本文主要综述了近年来国内外静电纺丝制备丝素蛋白纳米纤维的研究现状,重点介绍了采用不同溶剂制备的纯丝素蛋白纳米纤维和丝素蛋白与其它材料复合制备的丝素蛋白复合纳米纤维,并展望丝素蛋白纳米纤维潜在的应用前景。  相似文献   

5.
应用电化学恒电流共沉积法在医用纯钛基底上制备羟基磷灰石(HA)/胶原(collagen)复合涂层.SEM和XPS等测试表明:复合涂层呈特定有序的纳-微米二级多孔结构,化学组分为HA和胶原的有机-无机复合.借助体外细胞的培养实验观察种植于不同材料表面的细胞贴壁及生长形态,显示电化学共沉积的复合涂层具有比纯HA或纯钛表面更好的生物相容性.  相似文献   

6.
将胶原绑定结构域(CBD)多肽序列与骨形态发生蛋白2模拟肽(BMP2-MP)序列连接制备具有胶原绑定能力的CBD-BMP2-MP, 再将CBD-BMP2-MP与聚丙交酯-乙交酯/胶原(PLGA/COL)3D打印支架相结合, 以支架表面的胶原成分为媒介, 将CBD-BMP2-MP更有效地固定于骨修复材料上, 达到对其进行改性的目的. 利用扫描电子显微镜(SEM)、 电子万能试验机和接触角测量仪对复合支架表面形貌、 力学强度和亲水性等材料学性能进行评价. 用荧光成像法评测 CBD-BMP2-MP及BMP2-MP与支架材料的结合能力. 在各组支架材料表面接种MC3T3-E1细胞进行体外培养, 采用CCK-8、 鬼笔环肽荧光染色、 茜素红染色及qPCR综合评价细胞在材料表面的黏附、 增殖和成骨分化等细胞行为, 研究CBD-BMP2-MP修饰的3D多孔PLGA/COL复合支架的生物学性能. 研究结果表明, 利用3D打印技术制备的多孔支架具有形貌可控的孔隙结构, 为细胞生长创造更有利的细胞微环境, 支架表面胶原成分的加入提高了支架材料的亲水性, 同时对支架材料本身的力学性能无任何影响, 提高了复合支架本身的生物相容性. 与普通BMP2-MP相比, CBD-BMP2-MP具有更好的胶原绑定能力, 与复合支架的结合更稳定, 提高了PLGA/COL复合支架对BMP2-MP的负载能力. 支架表面负载CBD-BMP2-MP后具有极强的促细胞成骨分化能力. MC3T3-E1细胞表现出更高的钙沉积能力, 并且成骨分化相关基因Runx2, ALP, COL-I及OPN等水平也有了明显提升. 表明CBD-BMP2-MP多孔复合支架具有良好的生物相容性和成骨诱导活性, 在骨组织修复领域具有良好的应用前景.  相似文献   

7.
利用真空冷冻干燥技术, 将不同质量的纳米硅酸镁锂(nLMS)与壳聚糖(CA)和海藻酸钠(SA)混合, 制备了纳米硅酸镁锂-壳聚糖-海藻酸钠(nLMS-CS-SA)复合支架材料. 研究了不同质量分数(1%, 2%, 3%, 4%)的nLMS对nLMS-CS-SA复合支架材料的外形、 微观形貌、 溶胀率、 孔隙率、 体外降解性能和生物相容性的影响, 以确定nLMS-CS-SA复合支架材料中最佳nLMS含量. 研究结果显示, nLMS-CS-SA复合支架材料是具备形态可塑性的多孔状固体, 各组材料纵断面呈片层状, 其结构疏松且内部孔隙具有高度连通性; 随着nLMS含量的增加, nLMS-CS-SA复合支架材料的孔隙率呈现先降后升的趋势; 当nLMS的质量分数为3%时, 其溶胀比最小, 体外降解速率最慢; nLMS的添加降低了nLMS-CS-SA复合支架材料的毒性. 因此, nLMS在nLMS-CS-SA复合支架材料中的最佳含量为3%.  相似文献   

8.
利用溶液共混法以及溶剂挥发法制备了羟基磷灰石(Nano-HA)/聚乳酸(PLA)微粒,再粘结微粒加工成三维多孔Nano-HA/PLA微粒复合生物支架。借助相差显微镜、扫描电子显微镜和MTT法检测了鼠骨髓基质细胞(BMSCs)在该支架材料上的生长情况,通过细胞形态学观察和细胞增殖情况评价了该复合生物支架材料的生物相容性。结果表明,SEM观察到支架材料上培养细胞4d后,细胞主要附着、铺展在支架的低洼处或孔洞处表面,并向孔洞深部沿壁生长;在支架材料上培养细胞8d后,细胞多为梭形形态,并有许多生长角,直接贴附于支架的微粒表面,开始连片生长,有明显的增值,各组没有变形、坏死现象。支架材料上培养细胞2,3,4,5,6和8d的MTT检测表明,各实验组RGR均达到100%以上,细胞毒性为0级;细胞在支架材料上的生长曲线显示,实验组细胞活力比对照组高26%。因此,该Nano-HA/PLA微粒复合生物支架没有细胞毒性,并对细胞有良好的粘附和增殖能力,为较具潜力的骨修复材料。  相似文献   

9.
孙敏  杨华啸  周平  潘銮凤  刘水 《高分子学报》2010,(12):1430-1436
用丝素蛋白(SF)对微生物合成的高分子聚合物聚(3-羟基丁酸酯-co-3-羟基己酸酯)(PHBHHx)进行亲水改性,以提高材料的生物相容性.水接触角测定和表面自由能分析表明,丝素蛋白在支架表面吸附,使PHBHHx材料表面的水接触角从90°降至51°,表面自由能从37.9 mJ/m2增至57.4 mJ/m2,因而增加了材料的亲水性.进一步对亲水性改性前后PHBHHx多孔支架与人脐静脉内皮细胞(HUVECs)的相容性进行了比较.MTT法细胞活力分析表明,细胞在支架上培养3,5,7天后,其在SF改性PHBHHx多孔支架上的活力显著高于在未改性的PHBHHx支架上的活力;扫描电镜观察细胞生长形貌表明,细胞在改性后多孔支架上黏附及生长5天后,形成了连续细胞单层,其生长状态优于在未改性的PHBHHx支架上的生长状态;胶原含量测定表明细胞在改性后支架上比在未改性支架上有更好的胶原分泌能力,即改性后支架更利于诱导HUVECs分泌细胞外基质(ECM)从而构建类似体内的生长环境.  相似文献   

10.
将再生丝素蛋白(SF)与纳米生物活性玻璃(NBG)粉体复合成膜,制备出一种新型生物材料。采用场发射扫描电镜(FESEM)、红外光谱(FT-IR)、热重分析(TGA)等方法对复合膜结构进行表征。结果表明:NBG均匀分散在丝素膜中,随着NBG含量的增加,复合膜中丝素的构象部分由无规线团或SilkⅠ向SilkⅡ转变,同时力学性能变差。体外生物活性研究表明:复合膜表面沉积出较多的类骨羟基磷灰石(HA),说明其具有较高的生物活性及优良的诱导类骨HA沉积的能力。  相似文献   

11.
Abstract

In this paper, a series of porous nanohydroxyapatite/silk fibroin/chitosan (nHA/SF/CTS) scaffolds were successfully prepared using the freeze-drying method. The biomaterials were characterized by attenuated total reflection Fourier transform infrared spectroscopy, and mechanical testing and thermogravimetric analysis. Moreover, studies of porosity, pore size, swelling properties and in vitro degradation test were performed. Research has proved that micro-structure, porosity, water adsorption and compressive strength were greatly affected by the components’ concentration, in particular the content of silk fibroin. SEM observations showed that the scaffolds of nHA/SF/CTS are highly porous, with pore size in wide range from 25 to 300?µm which is suitable for cell growth. nHA/SF/CTS scaffolds have sufficient mechanical integrity to resist handling during implantation and in vivo loading. Both, the compressive modulus and compressive strength of the scaffold, decrease with the increase in silk fibroin content.  相似文献   

12.
通过原位沉淀法和冷冻相分离技术得到含有钙磷前驱体(CaP)的初始多孔支架, 利用多孔支架表面原位生成的壳聚糖(CS)膜减缓NaOH溶液中OH-离子的渗透速率, 以达到纳米羟基磷灰石(nHA)缓慢形成的目的, 从而制得nHA 分布均匀的CS/nHA多孔复合支架. 利用扫描电镜(SEM)和万能试验机研究复合支架的结构和性能, 发现nHA为针状结构, 长度为80200 nm, 宽度为2050 nm. 随着nHA含量的增加, 复合支架的孔隙率下降, 由(93.8±3.3)%降至(87.7±3.8)%, 压缩强度则逐渐提高, 由(0.5±0.09) MPa增加至(1.5±0.06) MPa. 当复合支架中nHA质量分数为25%时, 未发现nHA团聚现象, nHA均匀地分布于CS基体中. 通过红外光谱(FTIR)、 X射线衍射(XRD)及X射线光电子能谱(XPS)等分析推断, nHA与CS之间可能存在配位和氢键作用. 细胞实验结果表明, CS/nHA多孔复合支架具有良好的生物相容性, 细胞在支架内部贴壁黏附生长. CS/nHA多孔复合支架有望在骨组织工程领域具有良好的应用前景.  相似文献   

13.
Porous nano-hydroxyapatite/polycaprolactone (nHA/PCL) scaffolds with different composition ratios of nHA/PCL were fabricated via a melt-molding/porogen leaching technique. All scaffolds were characterized before and after degradation in vitro for six months. The original scaffolds had high porosity at around 70% and showed decreasing compressive modulus (from 24.48 to 2.69 MPa for hydrated scaffolds) with the introduction of nHA. It was noted that the scaffolds could retain relatively stable architecture and mechanical properties for at least six months, although some slight changes happened with the nHA/PCL scaffolds in the mass, the nHA content, the PCL molecular weight and the crystallinity. Moreover, during the 7 days culture of bone marrow stromal cells (BMSCs) on scaffolds, the cell adhesion and proliferation of BMSCs were presented well on both the surface and the cross-section of the scaffolds. All of these results suggested the nHA/PCL scaffolds to be promising in bone tissue engineering.  相似文献   

14.
《先进技术聚合物》2018,29(1):451-462
Scaffold, an essential element of tissue engineering, should provide proper physical and chemical properties and evolve suitable cell behavior for tissue regeneration. Polycaprolactone/Gelatin (PCL/Gel)‐based nanocomposite scaffolds containing hydroxyapatite nanoparticles (nHA) and vitamin D3 (Vit D3) were fabricated using the electrospinning method. Structural and mechanical properties of the scaffold were determined by scanning electron microscopy (SEM) and tensile measurement. In this study, smooth and bead‐free morphology with a uniform fiber diameter and optimal porosity level with appropriate pore size was observed for PCL/Gel/nHA nanocomposite scaffold. The results indicated that adding nHA to PCL/Gel caused an increase of the mechanical properties of scaffold. In addition, chemical interactions between PCL, gelatin, and nHA molecules were shown with XRD and FT‐IR in the composite scaffolds. MG‐63 cell line has been cultured on the fabricated composite scaffolds; the results of viability and adhesion of cells on the scaffolds have been confirmed using MTT and SEM analysis methods. Here in this study, the culture of the osteoblast cells on the scaffolds showed that the addition of Vit D3 to PCL/Gel/nHA scaffold caused further attachment and proliferation of the cells. Moreover, DAPI staining results showed that the presence and viability of the cells were greater in PCL/Gel/nHA/Vit D3 scaffold than in PCL/Gel/nHA and PCL/Gel scaffolds. The results also approved increasing cell proliferation and alkaline phosphatase (ALP) activity for MG‐63 cells cultured on PCL/Gel/nHA/Vit D3 scaffold. The results indicated superior properties of hydroxyapatite nanoparticles and vitamin D3 incorporated in PCL/Gel scaffold for use in bone tissue engineering.  相似文献   

15.
Nanofibrous scaffolds of silk fibroin (SF) and poly(l-lactic acid-co-?-caprolactone) (P(LLA-CL)) blends fabricated via electrospinning possessed good mechanical property and biocompatibility, as demonstrated by a previous study in vitro. However, the degradation behavior of the scaffolds, which may significantly influence tissue repair and regeneration, needs further exploration. In this study, in vitro degradation of pure SF, P(LLA-CL) and SF/P(LLA-CL) blended nanofibrous scaffolds were performed in phosphate-buffered saline (PBS, pH 7.4 ± 0.1) at 37 °C for 6 months. A series of analyses and characterizations (including morphologic changes, loss weight, pH changes of PBS solutions, DSC, XRD and FTIR-ATR) were conducted to the nanofibrous scaffolds after degradation and the results showed that the pure SF nanofibrous scaffolds were not completely degradable in PBS while pure P(LLA-CL) nanofibrous scaffolds had the fastest degradation rate. Moreover, the addition of SF reduced the degradation rate of P(LLA-CL) in SF/P(LLA-CL) blended nanofibrous scaffolds. This was probably caused by the intermolecular interactions between SF and P(LLA-CL), which hindered the movement of P(LLA-CL) molecular chains.  相似文献   

16.
Interconnected porous hydroxyapatite (HA) scaffolds are widely used for bone repair and replacement, owing to their ability to support the adhesion, transfer, proliferation and differentiation of cells. In the present study, the polymer impregnation approach was adopted to produce porous HA scaffolds with three-dimensional (3D) porous structures. These scaffolds have an advantage of highly interconnected porosity (≈85%) but a drawback of poor mechanical strength. Therefore, the as-prepared HA scaffolds were lined with composite polymer coatings in order to improve the mechanical properties and retain its good bioactivity and biocompatibility at the same time. The composite coatings were based on poly(d,l-lactide) (PDLLA) polymer solutions, and contained single component or combination of HA, calcium sulfate (CS) and chondroitin sulfate (ChS) powders. The effects of composite coatings on scaffold porosity, microstructure, mechanical property, in vitro mineralizing behavior, and cell attachment of the resultant scaffolds were investigated. The results showed that the scaffolds with composite coatings resulted in significant improvement in both mechanical and biological properties while retaining the 3D interconnected porous structure. The in vitro mineralizing behaviors were mainly related to the compositions of CS and ChS powders in the composite coatings. Excellent cell attachments were observed on the pure HA scaffold as well as the three types of composite scaffolds. These composite scaffolds with improved mechanical properties and bioactivities are promising bone substitutes in tissue engineering fields.  相似文献   

17.
A two‐step method was used to fabricate the hydroxyapatite (HAP)/silk fibroin (SF) scaffolds, i.e. the nano‐sized HAP/SF composite powders were prepared by co‐precipitation, which were then blended with SF solution to fabricate the HAP/SF composite scaffolds. The obtained scaffolds showed a 3D porous structure. The porosity was higher than 90% with the average macropore size of 214.2 µm. Moreover, the nano‐sized HAP/SF composite powders were uniformly dispersed in the silk fibroin matrix, which provided the scaffolds enhanced compressive properties. The cell culture assay showed that the scaffolds fabricated by the two‐step method could improve the cell proliferation and osteogenic differentiation when compared with those prepared by the conventional one‐step blending method. The results suggested that the two‐step method could promote the uniform dispersion of HAP in the SF matrix and efficient combination between the HAP and the matrix, which may provide a potential application in the composite scaffold preparation for tissue engineering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Nanostructured biocomposite scaffolds of poly(l-lactide) (PLLA) blended with collagen (coll) or hydroxyapatite (HA), or both for tissue engineering application, were fabricated by electrospinning. The electrospun scaffolds were characterized for the morphology, chemical and tensile properties by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA), Fourier transform infrared (FTIR) measurement, and tensile testing. Electrospun biocomposite scaffolds of PLLA and collagen or (and) HA in the diameter range of 200-700 nm mimic the nanoscale structure of the extracellular matrix (ECM) with a well-interconnection pore network structure. The presence of collagen in the scaffolds increased their hydrophility, and enhanced cell attachment and proliferation, while HA improved the tensile properties of the scaffolds. The biocompatibility of the electrospun scaffolds and the viability of contacting cells were evaluated by 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) nuclear staining and by fluorescein diacetate (FDA) and propidium iodide (PI) double staining methods. The results support the conclusion that 293T cells grew well on composite scaffolds. Compared with pure PLLA scaffolds a greater density of viable cells was seen on the composites, especially the PLLA/HA/collagen scaffolds.  相似文献   

19.
基于纳米羟基磷灰石溶胶的nHA/PA66复合粉体制备与表征   总被引:2,自引:0,他引:2  
本文开发了一种新的制备纳米羟基磷灰石(nHA)/聚酰胺66(PA66)复合材料的方法。先用明胶包覆nHA棒状颗粒,再将其制备成以N,N-二甲基乙酰胺和甘油的混合液为溶剂的稳定溶胶。当nHA溶胶与PA66溶液混合时,相同的酰胺基团保证了二者之间良好的共混相容性,成功制备了nHA/PA66复合材料。X射线衍射(XRD)、傅立叶红外光谱分析(FTIR)、透射电镜(TEM)、扫描电镜-能谱分析(SEM-EDS)以及差热分析(DTA)和热重分析(TG)等表征了产物的形貌、结构及成分分布。结果表明:明胶对nHA颗粒具有显著的化学包覆作用,使nHA溶胶与PA66溶液得以均匀混合,均匀分布在PA66基体中,二者以氢键结合为一体。  相似文献   

20.
In vitro production of sperm is a desirable idea for fertility preservation in azoospermic men and prepubertal boys suffering from cancer. In this study, a biocompatible porous scaffold based on a triad mixture of silk fibroin (SF), alginate (Alg), and laminin (LM) is developed to facilitate the differentiation of mouse spermatogonia stem cells (SSCs). Following SF extraction, the content is analyzed by SDS-PAGE and stable porous 3D scaffolds are successfully prepared by merely Alg, SF, and a combination of Alg-SF, or Alg-SF-LM through freeze-drying. Then, the biomimetic scaffolds are characterized regarding the structural and biological properties, water absorption capacity, biocompatibility, biodegradability, and mechanical behavior. Neonatal mice testicular cells are seeded on three-dimensional scaffolds and their differentiation efficiency is evaluated using real-time PCR, flow cytometry, immunohistochemistry. Blend matrices showed uniform porous microstructures with interconnected networks, which maintained long-term stability and mechanical properties better than homogenous structures. Molecular analysis of the cells after 21 days of culture showed that the expression of differentiation-related proteins in cells that are developed in composite scaffolds is significantly higher than in other groups. The application of a composite system can lead to the differentiation of SSCs, paving the way for a novel infertility treatment landscape in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号