首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To explore the role of hydrogen bonding and helix-lipid interactions in transmembrane helix association, we have calculated the potential of mean force (PMF) as a function of helix-helix distance between two pVNVV peptides, a transmembrane model peptide based on the GCN4 leucine-zipper, in a dimyristoylphosphatidylcholine (DMPC) membrane. The peptide name pVNVV represents the interfacial residues in the heptad repeat of the dimer. The free energy decomposition reveals that the total PMF consists of two competing contributions from helix-helix and helix-lipid interactions. The direct, favorable helix-helix interactions arise from the specific contribution from the helix-facing residues and the generic contribution from the lipid-facing residues. The Asn residues in the middle of the helices show the most significant per-residue contribution to the PMF with various hydrogen bonding patterns as a function of helix-helix distance. Release of lipid molecules between the helices into bulk lipid upon helix association makes the helix-lipid interaction enthalpically unfavorable but entropically favorable. Interestingly, the resulting unfavorable helix-lipid contribution to the PMF correlates well with the cavity volume between the helices. The calculated PMF with an Asn-to-Val mutant (pVNVV --> pVVVV) shows a dramatic free energy change upon the mutation, such that the mutant appears not to form a stable dimer below a certain peptide concentration, which is in good agreement with available experimental data of a peptide with the same heptad repeat. A transmembrane helix association mechanism and its implications in membrane protein folding are also discussed.  相似文献   

2.
Glycosylation regulates vital cellular processes and dramatically influences protein folding and stability. In particular, experiments have demonstrated that asparagine (N)-linked disaccharides drive a "conformational switch" in a model peptide. The present work investigates this conformational switch via extensive atomically detailed replica exchange molecular dynamics simulations in explicit solvent. To distinguish the effects of specific and nonspecific interactions upon the peptide conformational ensemble, these simulations considered model peptides that were N-linked to a disaccharide and to a steric crowder of the same shape. The simulations are remarkably consistent with experiment and provide detailed insight into the peptide structure ensemble. They suggest that steric crowding by N-linked disaccharides excludes extended conformations, but does not significantly impact the tetrahedral structure of the surrounding solvent or otherwise alter the peptide free energy surface. However, the combination of steric crowding with specific hydrogen bonds and hydrophobic stacking interactions more dramatically impacts the peptide ensemble and stabilizes new structures.  相似文献   

3.
以螺旋结构的形成过程为研究对象,基于粗粒化的格子模型和动态蒙特卡罗模拟方法,初步探讨了非天然氢键相互作用对均聚多肽链螺旋折叠动力学过程的影响.研究发现,非天然氢键的引入虽然延缓了其热力学转变的发生,但也从整体上降低了折叠动力学过程的能垒,在某一特定温度之下,反而可以提高折叠速率.对其折叠路径分布的分析表明,非天然氢键可以减少慢速折叠路径的发生,而后者是导致折叠时间增加的主要因素.另一方面,比较特定温度下多肽链链构象及螺旋片断随时间的演化进程,发现非天然氢键在一定程度上影响了天然氢键的形成以及天然态构象的稳定存在,同时也加快了其部分解折叠过程.这说明,非天然相互作用的存在有利于蛋白质构象的快速动态调整,从而行使其相应的生物功能.  相似文献   

4.
To give a deeper insight into the widely discussed catalytic mechanism of biotin, four representative model molecules and their aggregates hydrogen bonding (H-bonding) to water molecules were investigated by means of ab initio calculations and compared with molecular dynamics simulations. The roles of the ureido group, the sulfur atom, and the side chain of biotin are examined and discussed, respectively. Some significant H-bonding cooperativities are theoretically demonstrated in the ureido group of biotin. The pi-electron delocalization of the ureido group makes the system a good candidate for the H-bonding cooperativities, which in turn increases the covalent character of the corresponding H-bonds and facilitates the electrophilic substitution of the nitrogen atoms in the ureido group. The sulfur of biotin may participate in the delocalized pi-electron system of the ureido group via special sulfur-nitrogen bonding interactions, which reinforces the H-bonding cooperativities of the ureido group. The side chain of biotin not only reduced the accessibility of 3-NH due to steric hindrance but also enhanced the H-bonding cooperativities of the ureido group by folding over to hydrogen bond to more water molecules. The folded states are a probable way of activating 1-NH by strong cooperative effects. In addition, the H-bonding cooperativities may be a significant reason for the strong and specific binding between biotin and streptavidin.  相似文献   

5.
A molecular dynamics simulation of the folding of a short alanine-based helical peptide of 17 residues with three Glu...Lys (i, i + 4) salt bridge pairs, referred to as the AEK17 peptide, was carried out. The simulation gave an estimated simulation folding time of 2.5 ns, shorter than 12 ns for an alanine-based peptide of 16 residues with three Lys residues only, referred to as the AK16 peptide, simulated previously. After folded, the AEK17 peptide had a helical content of 77%, in excellent agreement with the experimentally determined value of 80%. An examination of the folding pathways of AEK17 indicated that the peptide proceeded via three-turn helix conformations more than the helix-turn-helix conformation in the folding pathways. An analysis of interactions indicated that the formation of hydrogen bonds between Lys residue side chains and backbone carbonyls is a major factor in the abundant conformation of the three-turn helix intermediate. The substitution of three Ala with Glu residues reduces the extent of hydrophobic interaction in alanine-based AK peptides with the result that the breaking of the interactions of Lys epsilon-NH3+(side chain)...C=O(backbone) is a major activation action for the AEK17 to achieve a complete fold, in contrast to the AK16 peptide, in which breaking non-native hydrophobic interaction is the rate-determining step.  相似文献   

6.
Large-scale periodic quantum mechanical calculations (509 atoms, 7852 atomic orbitals) based on the hybrid B3LYP functional focused on the peptide folding induced by the adsorption on the (001) and (010) hydroxyapatite (HA) surfaces give interesting insights on the role of specific interactions between surface sites and the peptide, which stabilize the helix conformation over the "native" random coil ones for in silico designed model peptides. The two peptides were derived from the 12-Gly oligomer, with one (P1, C-tGGKGGGGGGEGGN-t) and two (P2, C-tGGKGGKEGGEGGN-t) glutamic acid (E) and lysine (K) residue mutations. The most stable gas-phase "native" conformation for both peptides resulted in a random coil (RC) structure, with the helix (H) conformation being ≈100 kJ mol(-1) higher in free energy. The two peptide conformations interact with the HA (001) and (010) surfaces by C═O groups via Ca(2+) ions, by hydrogen bond between NH(2) groups and the basic PO(4)(3-) groups and by a relevant fraction due to dispersion forces. Peptide adsorption was studied on the dry (001) surface, the wet one envisaging 2 H(2)O per surface Ca(2+) and, on the latter, also considering the adsorption of microsolvated peptides with 4 H(2)O molecules located at sites responsible of the interaction with the surface. The P1 mutant does prefer to be adsorbed as a random coil by ≈160 kJ/mol, whereas the reverse is computed for P2, preferring the helix conformation by ≈50 kJ/mol. Adsorption as helix of both P1 and P2 mutants brings about proton transfer toward the HA surfaces with a large charge transfer component to the interaction energy.  相似文献   

7.
Abstract— The synthesis, absorption and emission properties of threo and erythro N-acetyl-bis-(pyrenylalanine)-methylester are discussed. The intensity of excimer emission is very dependent on the tendency of the solvent to interact with the peptide function by hydrogen bonding. Hydrogen accepting solvents shift the equilibrium between the different conformations, adopted by these dipeptides, towards a random coil conformation, which is unfavourable for excimer formation. In strongly hydrogen donating solvents however, a very intense excimer emission is observed due to a reduction of the partial double bond character of the peptide bond by an hydrogen bridge with the solvent molecules.  相似文献   

8.
The analysis of the folding mechanism in peptides adopting well‐defined secondary structure is fundamental to understand protein folding. Herein, we describe the thermal unfolding of a 15‐mer vascular endothelial growth factor mimicking α‐helical peptide (QKL10A) through the combination of spectroscopic and computational analyses. In particular, on the basis of the temperature dependencies of QKL10A Hα chemical shifts we show that the first phase of the thermal helix unfolding, ending at around 320 K, involves mainly the terminal regions. A second phase of the transition, ending at around 333 K, comprises the central helical region of the peptide. The determination of high‐resolution QKL10A conformational preferences in water at 313 K allowed us to identify, at atomic resolution, one intermediate of the folding–unfolding pathway. Molecular dynamics simulations corroborate experimental observations detecting a stable central helical turn, which represents the most probable site for the helix nucleation in the folding direction. The data presented herein allows us to draw a folding–unfolding picture for the small peptide QKL10A compatible with the nucleation–propagation model. This study, besides contributing to the basic field of peptide helix folding, is useful to gain an insight into the design of stable helical peptides, which could find applications as molecular scaffolds to target protein–protein interactions.  相似文献   

9.
Characterization of the molecular interactions that stabilize the folded state of proteins including hydrogen bond formation, solvation, molecular crowding, and interaction with membrane environments is a fundamental goal of theoretical biophysics. Inspired by recent experimental studies by Gai and co-workers, we have used molecular dynamics simulations to explore the structure and dynamics of the alanine-rich AKA(2) peptide in bulk solution and in a reverse micelle environment. The simulated structure of the reverse micelle shows substantial deviations from a spherical geometry. The AKA(2) peptide is observed to (1) remain in a helical conformation within a spherically constrained reverse micelle and (2) partially unfold when simulated in an unconstrained reverse micelle environment, in agreement with experiment. While aqueous solvation is found to stabilize the N- and C-termini random coil portions of the peptide, the helical core region is stabilized by significant interaction between the nonpolar surface of the helix and the aliphatic chains of the AOT surfactant. The results suggest an important role for nonpolar peptide-surfactant and peptide-lipid interactions in stabilizing helical geometries of peptides in reverse micelle environments.  相似文献   

10.
应用分子动力学模拟和结合自由能计算方法研究了多肽抑制剂KLVFF、VVIA和LPFFD抑制淀粉质多肽42 (Aβ42)构象转换的分子机理. 结果表明, 三种多肽抑制剂均能够有效抑制Aβ42的二级结构由α-螺旋向β-折叠的构象转换. 另外, 多肽抑制剂降低了Aβ42分子内的疏水相互作用, 减少了多肽分子内远距离的接触, 有效抑制了Aβ42的疏水塌缩, 从而起到稳定其初始构象的作用. 这些抑制剂与Aβ42之间的疏水和静电相互作用(包括氢键)均有利于它们抑制Aβ42的构象转换. 此外, 抑制剂中的带电氨基酸残基可以增强其和Aβ42之间的静电相互作用(包括氢键), 并降低抑制剂之间的聚集, 从而大大增强对Aβ42构象转换的抑制能力. 但脯氨酸的引入会破坏多肽的线性结构, 从而大大降低其与Aβ42 之间的作用力. 上述分子模拟的结果揭示了多肽抑制剂KLVFF、VVIA和LPFFD抑制Aβ42构象转换的分子机理, 对于进一步合理设计Aβ的高效短肽抑制剂具有非常重要的理论指导意义.  相似文献   

11.
Comprehension of the basic concepts for the design of CO2-philic molecules is important due to the possibility for "green" chemistry in supercritical CO2 of substitute solvent systems. Lewis acid-base interactions and C-H...O weak hydrogen bonding were suggested as two key factors in the solubility of CO2-philic molecules. To isolate the stabilization energy of weak hydrogen bonding from the overall binding energy, high-level quantum mechanical calculations were performed for the van der Waals complexes of CO2 with methane, methylacetate, dimethylether, acetaldehyde, and 1,2-dimethoxyethane. Structures and energies were calculated at the MP2 level of theory using the 6-31+G(d) and aug-cc-pVDZ basis sets with basis set superposition error corrections. In addition, the single-point energies were calculated using recently developed multilevel methods. This study shows that the Lewis acid-base interaction has a significant impact on the complex stability compared to the C-H...O weak hydrogen bond. The additional stabilization energy of the cooperative weak hydrogen bond with alpha-proton of the carbonyl group was negligible on the enhancement of supercritical CO2 solubility. However, the stabilization energy was larger for the ether group, such that it may have an important role in increasing the supercritical CO2 solubility. Additional formation of cooperative weak hydrogen bonds may not further increase the solubility due to the stability reduction by steric hindrance.  相似文献   

12.
Analysis of the energetics of small molecule ligand-protein, ligand-nucleic acid, and protein-nucleic acid interactions facilitates the quantitative understanding of molecular interactions that regulate the function and conformation of proteins. It has also been extensively used for ranking potential new ligands in virtual drug screening. We developed a Web-based software, PEARLS (Program for Energetic Analysis of Ligand-Receptor Systems), for computing interaction energies of ligand-protein, ligand-nucleic acid, protein-nucleic acid, and ligand-protein-nucleic acid complexes from their 3D structures. AMBER molecular force field, Morse potential, and empirical energy functions are used to compute the van der Waals, electrostatic, hydrogen bond, metal-ligand bonding, and water-mediated hydrogen bond energies between the binding molecules. The change in the solvation free energy of molecular binding is estimated by using an empirical solvation free energy model. Contribution from ligand conformational entropy change is also estimated by a simple model. The computed free energy for a number of PDB ligand-receptor complexes were studied and compared to experimental binding affinity. A substantial degree of correlation between the computed free energy and experimental binding affinity was found, which suggests that PEARLS may be useful in facilitating energetic analysis of ligand-protein, ligand-nucleic acid, and protein-nucleic acid interactions. PEARLS can be accessed at http://ang.cz3.nus.edu.sg/cgi-bin/prog/rune.pl.  相似文献   

13.
A series of small, unsymmetrical pyridine‐2,6‐dicarboxylamide oligoamide foldamers with varying lengths and substituents at the end groups were synthetized to study their conformational properties and folding patterns. The @‐type folding pattern resembled the oxyanion‐hole motifs of enzymes, but several alternative folding patterns could also be characterized. Computational studies revealed several alternative conformers of nearly equal stability. These folding patterns differed from each other in their intramolecular hydrogen‐bonding patterns and aryl–aryl interactions. In the solid state, the foldamers adopted either the globular @‐type fold or the more extended S‐type conformers, which were very similar to those foldamers obtained computationally. In some cases, the same foldamer molecule could even crystallize into two different folding patterns, thus confirming that the different folding patterns are very close in energy in spite of their completely different shapes. Finally, the best match for the observed NOE interactions in the liquid state was a conformation that matched the computationally characterized helix‐type fold.  相似文献   

14.
Self-assembly is one of nature's mechanisms by which higher order structures are obtained. Two of the main driving forces for self-assembly, hydrophobic interactions and hydrogen bonding, are both present within amphiphilic peptides. Here, it is demonstrated how the intricately interconnected folding and assembly behavior of an N-terminally acylated peptide, with the sequence GANPNAAG, has been tuned by varying its hydrophobic tail and thermal history. The change in interplay between hydrophobic forces and peptide folding allowed the occurrence of different types of aggregation, from soluble peptides with a random coil conformation to aggregated peptides arranged in a beta-sheet assembly, which form helically twisted bilayer ribbons.  相似文献   

15.
The halogen and hydrogen bonding complexes between 2,2,6,6-tetramethylpiperidine-noxyl and trihalomethanes (CHX3, X=Cl, Br, I) are simulated by computational quantum chem-istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order Cl相似文献   

16.
17.
N-Acetyl-β-glucosamine (NAG) is an important moiety of glycoproteins and is involved in many biological functions. However, conformational and dynamical properties of NAG molecules in aqueous solution, the most common biological environment, remain ambiguous due to limitations of experimental methods. Increasing efforts are made to probe structural properties of NAG and NAG-containing macromolecules, like peptidoglycans and polymeric chitin, at the atomic level using molecular dynamics simulations. In this work, we develop a polarizable carbohydrate force field for NAG and contrast simulation results of various properties using this novel force field and an analogous nonpolarizable (fixed charge) model. Aqueous solutions of NAG and its oligomers are investigated; we explore conformational properties (rotatable bond geometry), electrostatic properties (dipole moment distribution), dynamical properties (self-diffusion coefficient), hydrogen bonding (water bridge structure and dynamics), and free energy of hydration. The fixed-charge carbohydrate force field exhibits deviations from the gas phase relative rotation energy of exocyclic hydroxymethyl side chain and of chair/boat ring distortion. The polarizable force field predicts conformational properties in agreement with corresponding first-principles results. NAG-water hydrogen bonding pattern is studied through radial distribution functions (RDFs) and correlation functions. Intermolecular hydrogen bonding between solute and solvent is found to stabilize NAG solution structures while intramolecular hydrogen bonds define glycosidic linkage geometry of NAG oligomers. The electrostatic component of hydration free energy is highly dependent on force field atomic partial charges, influencing a more favorable free energy of hydration in the fixed-charge model compared to the polarizable model.  相似文献   

18.
We used a combined approach of experiment and simulation to determine the helical population and folding pathway of a small helix forming blocked pentapeptide, Ac-(Ala)(5)-NH(2). Experimental structural characterization of this blocked peptide was carried out with far UV circular dichroism spectroscopy, FTIR, and NMR measurements. These measurements confirm the presence of the α-helical state in a buffer solution. Direct molecular dynamics and replica-exchange simulations of the pentapeptide were performed using several popular force fields with explicit solvent. The simulations yielded statistically reliable estimates of helix populations, melting curves, folding, and nucleation times. The distributions of conformer populations are used to measure folding cooperativity. Finally, a statistical analysis of the sample of helix-coil transition paths was performed. The details of the calculated helix populations, folding kinetics and pathways vary with the employed force field. Interestingly, the helix populations, folding, and unfolding times obtained from most of the studied force fields are in qualitative agreement with each other and with available experimental data, with the deviations corresponding to several kcal/mol in energy at 300 K. Most of the force fields also predict qualitatively similar transition paths, with unfolding initiated at the C-terminus. Accuracy of potential energy parameters, rather than conformational sampling may be the limiting factor in current molecular simulations.  相似文献   

19.
Non‐equilibrium molecular dynamics simulations of a solvated 21‐residue polyalanine (A21) peptide, featuring a high propensity for helix formation, have been performed at 300 K and 1 bar in the presence of external electromagnetic (e/m) fields in the microwave region (2.45 GHz) and an r.m.s. electric field intensity range of 0.01–0.05 V/Å. To investigate how the field presence affects transitions between the conformational states of a protein, we report 16 independent 40 ns‐trajectories of A21 starting from both extended and fully folded states. We observe folding‐behavior of the peptide consistent with prior simulation and experimental studies. The peptide displays a natural tendency to form stable elements of secondary structure which are stabilized by tertiary interactions with proximate regions of the peptide. Consistent with our earlier work, the presence of external e/m fields disrupts this behavior, involving a mechanism of localized dipolar alignment which serves to enhance intra‐protein perturbations in hydrogen bonds (English, et al., J. Chem. Phys. 2010 , 133, 091105), leading to more frequent transitions between shorter‐lifetime states. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The design of a stimuli-responsive peptide whose conformation is controlled by wavelength-specific light and metal coordination is described. The peptide adopts a defined tertiary structure and its conformation can be modulated between an α-helical coiled coil and β-sheet. The peptide is designed with a hydrophobic interface to induce coiled coil formation and is based on a recently described strategy to obtain switchable helix dimers. Herein, we endowed the helix dimer with 8-hydroxyquinoline (HQ) groups to achieve metal coordination and shift to a β-sheet structure. It was found that the conformational shift only occurs upon introduction of Zn2+; other metal ions (Cu2+, Fe3+, Co2+, Mg2, and Ni2+) do not offer switching likely due to non-specific metal-peptide coordination. A control peptide lacking the metal-coordinating residues does not show conformational switching with Zn2+ supporting the role of this metal in stabilizing the β-sheet conformation in a defined manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号