首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Examination of the folding of a short alanine-based helical peptide with salt bridges using molecular dynamics simulation
Authors:Wang Wei-Zhou  Lin Topp  Sun Ying-Chieh
Institution:Department of Chemistry, National Taiwan Normal University, 88, TingChow Road Section 4, Taipei 116, Taiwan.
Abstract:A molecular dynamics simulation of the folding of a short alanine-based helical peptide of 17 residues with three Glu...Lys (i, i + 4) salt bridge pairs, referred to as the AEK17 peptide, was carried out. The simulation gave an estimated simulation folding time of 2.5 ns, shorter than 12 ns for an alanine-based peptide of 16 residues with three Lys residues only, referred to as the AK16 peptide, simulated previously. After folded, the AEK17 peptide had a helical content of 77%, in excellent agreement with the experimentally determined value of 80%. An examination of the folding pathways of AEK17 indicated that the peptide proceeded via three-turn helix conformations more than the helix-turn-helix conformation in the folding pathways. An analysis of interactions indicated that the formation of hydrogen bonds between Lys residue side chains and backbone carbonyls is a major factor in the abundant conformation of the three-turn helix intermediate. The substitution of three Ala with Glu residues reduces the extent of hydrophobic interaction in alanine-based AK peptides with the result that the breaking of the interactions of Lys epsilon-NH3+(side chain)...C=O(backbone) is a major activation action for the AEK17 to achieve a complete fold, in contrast to the AK16 peptide, in which breaking non-native hydrophobic interaction is the rate-determining step.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号