首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
用TEA CO_2激光将C_2H_4分子激发到高振动激发态,高振动激发态的C_2H_4分子与基态的K原子碰撞发生振动态→电子态(V→E)传能过程,根据提出的能级组模型,对测得的时间分辨原子荧光信号进行处理,获得温度在453-663 K范围内,C_2H_4-K体系中V→E传能速率的数量级为10~(-10)/cm~3·molecule~(-1)·s~(-1),对应的碰撞传能截面约为0.30~0.80 nm.随着反应温度升高,V→E传能截面减小.上述实验结果表明碰撞体间吸引相互作用在这种非共振的V→E传能过程中起主要作用.利用多极相互作用势下的碰撞络合物模型对实验结果进行了讨论.  相似文献   

2.
范德华复合物C6H5CH3…N2的共振双光子电离光谱   总被引:2,自引:0,他引:2  
由复合物C6H5CH3…N2共振双光子电离光谱获得了复合物分子间范德华振动模式和N2的内转动的大量信息.通过对比同位素分子C6D5CD3…N2的光谱,我们合理地归属了所观察到的C6H5CH3…N2复合物的所有谱线.由光解离碎片的机理分析,推得复合物C6H5CH3…N2的激发态和基态的键能大约是494和474 cm-1,与理论计算值非常接近.  相似文献   

3.
高义德  冉琴  陈旸  陈从香 《化学学报》2002,60(2):256-260
对CCl4/Ar混合气体直流脉冲放电产生CCl2自由基,再分别用波长为550.56nm,541.52nm,532.25nm,524.31nm,523.82nm和523.27nm的激光将电子基态CCl2激励到激发态A^1B1的(0,3,0),(0,4,0),(1,3,0),(0,6,0),(1,4,0),(2,2,0)振动态,激发态CCl2(A^1B1)的不同振动态的时间分辨荧光信号显示该信号呈双指数衰减,测得室温下CCl2(A^1B1)不同振动态被NH3,H2O,CH2Br2,NH(CH3)2,NH(C2H5)2,N(C2H5)3,n-C6H14等分子猝灭的实验结果,用三能级模型分析处理实验数据,获得态分辨速率常数kA和ka值,并对实验结果进行了讨论。  相似文献   

4.
本文采用含Davidson校正的多参考组态相互作用MRCI+Q方法以及aug-cc-pVQZ基组计算了N2H体系的基态与第一激发态近24000个从头算能量点,使用三次样条插值法构建了高精度的全域绝热势能面.基态势能面具有一个极小点以及高于极小点0.44 eV的鞍点.基于该势能面上发生的N(~4S)+NH(X~3∑~-)→H(~2S)+N_2(X~1∑_g~g)反应是一个无能垒的放热反应,放热量为6.172 eV,比过去的势能面更接近实验值(5.956 eV).基态与第一激发态势能面间存在明显的锥形交叉,说明两个态之间存在非绝热耦合.此外,采用Lanczos算法预测了基态N_2H分子的振动能级.  相似文献   

5.
分子单重/叁重混合激发态碰撞传能中的量子干涉效应   总被引:2,自引:0,他引:2  
沙国河  张存浩 《物理化学学报》2004,20(Z1):1010-1016
量子干涉效应是基于量子力学波粒二象性原理,即微观粒子的运动皆具有波的特性而产生的一种干涉现象,故又称为物质波干涉.近年来,在分子的光激发、光解和光电离及碰撞过程中皆已观察到量子干涉效应,成为分子动态学领域研究热点之一.我们小组在国际上首次得到了单重/叁重混合激发态分子碰撞传能中的量子干涉的实验证据,从理论上导出了包括干涉相位角的传能截面公式,从实验上发展了激光双共振多光子电离光谱技术,用以测定了CO(A1П,v=0/e3∑-,v=1)与各种原子(He,Ne,Ar)及双原子分子H2,O2,N2,HCl碰撞传能的干涉角.其后又与李丽的小组合作,在热管炉中用激光双共振诱导荧光法观察到Na2(A1∑+uv=8/b3П0u,v=14)-Na碰撞中的量子干涉效应,证明了碰撞干涉效应的普遍性.近年来,在理论方面,我们发展了基于含时微扰的一级波恩近似量子散射方法,计算出了上述碰撞体系的干涉角θST,与实验值符合极好.本文指出虽然气池实验测得的干涉角θST是不同分子碰撞速度及碰撞参数的"平均"结果,但与理论计算的微分干涉角尚比较接近,可提供激发态分子碰撞相互作用势的重要而难得的信息.  相似文献   

6.
在束 气和束 束实验条件下,详细研究了NH2(A1,090,423)自由基分别与Ar,N2,O2和NH3碰撞引起的电子态猝灭和转动态 态传能,获得了总的猝灭截面σQ (分别为≤0.17、0.26、0.30和0.48 nm2),以及相对转动态 态传能截面.利用碰撞络合物模型计算的电子猝灭截面与实验测得的截面具有基本相同的趋势,表明长程吸引势在猝灭过程中起着重要的作用.同时还发现,转动态 态传能中相对截面随着碰撞对的折合质量的减小而下降.由于NH3具有较大的偶极矩以及O2的开壳层电子结构使得猝灭截面增大,而转动态 态传能截面减小.  相似文献   

7.
在束-气和束-束实验条件下,详细研究了NH2(A2A1,090,423)自由基分别与Ar,N2,O2和NH3碰撞引起的电子态猝灭和转动态-态传能,获得了总的猝灭截面σQ(分别为≤0.17、0.26、0.30和0.48 nm2),以及相对转动态-态传能截面.利用碰撞络合物模型计算的电子猝灭截面与实验测得的截面具有基本相同的趋势,表明长程吸引势在猝灭过程中起着重要的作用.同时还发现,转动态-态传能中相对截面随着碰撞对的折合质量的减小而下降.由于NH3具有较大的偶极矩以及O2的开壳层电子结构使得猝灭截面增大,而转动态-态传能截面减小.  相似文献   

8.
利用飞秒泵浦-探测技术结合飞行时间质谱(TOF-MS),研究了丙烯酸分子被200nm泵浦光激发到第二电子激发态(S2)后的超快预解离动力学.采集了母体离子和碎片离子的时间分辨质谱信号,并利用动力学方程对时间分辨离子质谱信号进行拟合和分析,揭示了预解离通道的存在.布居在S2激发态的分子通过快速的内转换弛豫到第一电子激发态(S1),时间常数为210fs,随后再经内转换从S1态弛豫到基态(S0)的高振动态,时间常数为1.49ps.分子最终在基态高振动态势能面上发生C-C键和C-O键的断裂,分别解离生成H2C=CH和HOCO、H2C=CHCO和OH中性碎片,对应的预解离时间常数分别约为4和3ps.碎片离子的产生有两个途径,分别来自于母体离子的解离和基态高振动态势能面上中性碎片的电离.  相似文献   

9.
用时间分辨窝里叶红外发射谱研究了高振动激发态CO向C2H2的传能,得到了CO(v=1-3)各振动态布展及其随时间的变化,利用微分法解出弛豫微分方程组,获得CO(v=1-3)向C2H2的传能速率常数分别为:2.0±0.1,6.0±0.2和9.1±0.8(10-13cm3·molecule-1·s-1).传能速率随着振动量子数的增加而迅速增加.CO的振动能应向C2H2的对称伸缩模v2近共振V-V传递.传能过程中还可能形成二聚体络合物,加速了CO(v)向C2H2的传能.用abinitio方法确定了CO...C2H2两种可能的直线构型.  相似文献   

10.
采用含时量子波包理论的简单模型对5-氯尿嘧啶和尿嘧啶的共振拉曼光谱开展了强度分析拟合, 获得了1(π, π*)激发态的几何结构变化动态特征. 结果表明, 尿嘧啶1S0→1S2跃迁的动态结构特征因5-位氯原子取代而改变. 5-氯尿嘧啶的动态结构特征主要沿C5=C6伸缩振动+C6H12 弯曲振动和N3H9/N1H7弯曲振动+N1C6伸缩振动反应坐标展开, 而尿嘧啶的动态结构特征主要沿嘧啶环的伸缩振动+C5H11/C6H12/N1H7弯曲振动和C4=O10伸缩振动反应坐标展开. π和π*轨道中氯原子的pz电子参与嘧啶环的p-π共轭作用导致了在1(π, π*)激发态上5-氯尿嘧啶的振动重组能更多地配分给嘧啶环的弯曲振动模式和C5=C6伸缩振动模式. 尿嘧啶在甲醇中的激发态动态结构特征与在水中的基本一致, 但波包沿C5H11/C6H12/N1H7弯曲振动+N1C6伸缩振动(υ12)和环呼吸振动(υ17)反应坐标的运动明显增强.  相似文献   

11.
Quasiclassical trajectory calculation (QCT) is used frequently for studying collisional energy transfer between highly vibrationally excited molecules and bath gases. In this paper, the QCT of the energy transfer between highly vibrationally excited C6F6 and N2 ,O2 and ground state C6F6 were performed. The results indicate that highly vibrationally excited C6F6 transferred vibrational energy to vibrational distribution of N2, O2 and ground state C6F6, so they are V-V energy transfer. Especially it is mainly V-V resonance energy transfer between excited C6F6 andground state C6F6, excited C6F6 transfers more vibrational energy to ground state C6F6 than to N2 and O2. The values of QCT, - (ΔEvib) of excited C6F6 are smaller than those of experiments.  相似文献   

12.
The distribution of rotational and vibrational energy in HCO produced by the O((3)P)+C(2)H(4) reaction has been measured using laser-induced fluorescence detection via the B(2)A(')-X(2)A(') transition. Over a detection wavelength range of 248-290 nm, our experiments have shown that HCO is formed in both the ground state and in at least six vibrationally excited states with up to two quanta of energy in the C-O stretch and the bending mode. Dispersed fluorescence experiments were conducted to positively assign all of the HCO vibrational bands. The experiments confirmed that many bands, including the B(000)-X(000) band, are affected by overlap with other HCO bands. Spectral modeling was used to separate the contributions of overlapping HCO B-X bands and to determine a nascent HCO rotational temperature of approximately 600 K, corresponding to approximately 6% of the total energy from the O((3)P)+C(2)H(4) reaction. HCO vibrational distributions were determined for two different average collision energies and were fit with vibrational temperatures of 1850+/-80 K and 2000+/-100 K, corresponding to approximately 15% of the total energy. The observed Boltzmann distribution of vibrational energy in HCO indicates that HCO and CH(3) are formed by the dissociation of an energized intermediate complex.  相似文献   

13.
Energy transfer of highly vibrationally excited naphthalene in the triplet state in collisions with CHF(3), CF(4), and Kr was studied using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. Highly vibrationally excited naphthalene (2.0 eV vibrational energy) was formed via the rapid intersystem crossing of naphthalene initially excited to the S(2) state by 266 nm photons. The shapes of the collisional energy-transfer probability density functions were measured directly from the scattering results of highly vibrationally excited naphthalene. In comparison to Kr atoms, the energy transfer in collisions between CHF(3) and naphthalene shows more forward scatterings, larger cross section for vibrational to translational (V → T) energy transfer, smaller cross section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation, especially in the range -ΔE(d) = -100 to -800 cm(-1). On the other hand, the difference of energy transfer properties between collisional partners Kr and CF(4) is small. The enhancement of the V → T energy transfer in collisions with CHF(3) is attributed to the large attractive interaction between naphthalene and CHF(3) (1-3 kcal/mol).  相似文献   

14.
A computational model is used to quantify the evolution of quantum state populations as highly vibrationally excited (14)N(2) ((14)N(2)?) equilibrates in various bath gases. Multicollision energy disposal follows general principles established in related single collision processes. Thus when state-to-state routes permit, maximum amounts of energy are deposited into partner species by direct vibration-to-vibration (V-V) exchange. When these pathways are absent, e.g., when Ar is the bath species, relaxation is very slow and multistaged. Conversely, in a bath of v = 0 (14)N(2) molecules, 16 vibrational quanta (Δv = ± 8) are resonantly exchanged from (v;j) = (8;10) with vibrational equilibration so rapid that rotation and translation still lag far behind after 1000 collisions. Near-resonant V-V exchange dominates the initial phase when (15)N(2) forms the bath gas and although some rotational warming occurs, vibrational modes remain decoupled from, and significantly hotter than, the low heat capacity modes. These forms of behavior seem likely to characterize excited and bath species that have closely similar vibration and rotation constants. More generic in nature is (14)N(2) in O(2) or in a mixture that closely resembles air. Here, asymmetric V-V exchange is a dominant early feature in ensemble evolution but energy differences in the key vibration and rotation quanta lead to V-V energy defects that are compensated for by the low energy modes. This results in much more rapid ensemble equilibration, generally within 400-500 collisions, when O(2) is present even as a minor constituent. Our results are in good general agreement with those obtained from experimental studies of N(2) plasmas both in terms of modal temperatures and initial (first collision cycle) cross-sections.  相似文献   

15.
The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.  相似文献   

16.
The energy transfer dynamics between highly vibrationally excited azulene molecules (37 582 cm(-1) internal energy) and Ar atoms in a series of collision energies (200, 492, 747, and 983 cm(-1)) was studied using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. The angular resolved collisional energy-transfer probability distribution functions were measured directly from the scattering results of highly vibrationally excited azulene. Direct T-VR energy transfer was found to be quite efficient. In some instances, nearly all of the translational energy is transferred to vibrational/rotational energy. On the other hand, only a small fraction of vibrational energy is converted to translational energy (V-T). Significant amount of energy transfer from vibration to translation was observed at large collision energies in backward and sideway directions. The ratios of total cross sections between T-VR and V-T increases as collision energy increases. Formation of azulene-argon complexes during the collision was observed at low enough collision energies. The complexes make only minor contributions to the measured translational to vibrational/rotational (T-VR) energy transfer.  相似文献   

17.
The photodesorption of H(2)O in its vibrational ground state, and of OH radicals in their ground and first excited vibrational states, following 157 nm photoexcitation of amorphous solid water has been studied using molecular dynamics simulations and detected experimentally by resonance-enhanced multiphoton ionization techniques. There is good agreement between the simulated and measured energy distributions. In addition, signals of H(+) and OH(+) were detected in the experiments. These are inferred to originate from vibrationally excited H(2)O molecules that are ejected from the surface by two distinct mechanisms: a direct desorption mechanism and desorption induced by secondary recombination of photoproducts at the ice surface. This is the first reported experimental evidence of photodesorption of vibrationally excited H(2)O molecules from water ice.  相似文献   

18.
用高分辨、高速、高灵敏度的二极管激光探测法研究了高振动激发的NO2分子与NH3分子的振动能量转移,YAG532um倍频光作为NO2的激发光源,红外二极管激光(约10μ)探测NH3ν2模被激发振转能级的时间分辨的吸收光谱.实验得到NO2与NH3气压比为1:5,1:1,2:1和5:1时NH3(0100;7;k)的激发速率分别为9.28、6.42、5.05和3.65×10-1ms-1·Pa-1.在NH3压力为133Pa时,有大约6%的高振动激发NO2能量转移到NH3ν2振动模,其它大部分转移到NH3的转动和平动能.文中讨论了振动激发的机理.  相似文献   

19.
Velocity map ion imaging of the H atoms formed in the photodissociation of vibrationally excited ammonia molecules measures the extent of adiabatic and nonadiabatic dissociation for different vibrations in the electronically excited state. Decomposition of molecules with an excited symmetric N-H stretch produces primarily ground state NH(2) along with a H atom. The kinetic energy release distribution is qualitatively similar to the ones from dissociation of ammonia excited to the electronic origin or to several different levels of the bending vibration and umbrella vibration. The situation is very different for electronically excited molecules containing a quantum of antisymmetric N-H stretch. Decomposition from that state produces almost solely electronically excited NH(2)*, avoiding the conical intersection between the excited state and ground state surfaces. These rotationally resolved measurements agree with our previous inferences from lower resolution Doppler profile measurements. The production of NH(2)* suggests that the antisymmetric stretching excitation in the electronically excited molecule carries it away from the conical intersection that other vibrational states access.  相似文献   

20.
The dynamics of the reaction, V(a 4FJ)+NO-->VO(X 4Sigma-)+N was studied by using a crossed-beam technique at 16.4 kJ/mol of collision energy. The V atomic beam was generated by laser vaporization and crossed with the O2 beam at a right angle. The laser-induced fluorescence (LIF) for the transition of VO(B 4Pi-X 4Sigma) was used to determine the rotational state distribution of the reaction product in the vibrational ground state. Almost pure V(a 4FJ) beam was obtained by using the mixture of NH3 with N2 as a carrier gas. Comparing the LIF spectra of VO measured for two carrier gases, i.e., NH3N2 and pure N2, it was concluded that the vibrational ground state of VO(X 4Sigma-) is formed almost entirely from the reaction of V(a 4FJ) and the contribution of the metastable V(a 6DJ) is negligible. The observed rotational distribution was similar to a statistical prior prediction, and suggested that the title reaction proceeds via a long-lived intermediate, which is consistent with an electron transfer mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号