首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
聚甲基丙烯酸甲酯/石墨薄片纳米复合及其导电性能研究   总被引:5,自引:0,他引:5  
在聚合物绝缘材料基体中添加入足够数量的导电填料 ,聚合物便具有导电性或半导体性能 .石墨材料 ,由于资源丰富、价廉、性质稳定 ,被广泛用作导电聚合物复合材料的填料 .一般 ,填料含量越高 ,复合材料的导电性能越好 ,但是材料的力学性能也随之劣化 ,特别是材料脆性增加 .将石墨加工成纳米级粒子 ,再与聚合物纳米复合 ,有望用较少的石墨填充量使复合材料具有良好的电传导性能 ,从而保持材料的力学性能 .最近报道的利用膨胀石墨与聚合物实现纳米复合的研究引起了人们的兴趣 ,如所报道的尼龙 6 膨胀石墨[1] 、PS PMMA 膨胀石墨[2 ] 、PP …  相似文献   

2.
开发了反胶束模板-原位聚合纳米复合法制备聚苯胺(PANI)/Ce(OH)3-Pr2O3·3H2O/石墨纳米薄片(NanoG)纳米复合材料的方法.膨胀石墨在乙醇水溶液中经超声处理制得石墨纳米薄片,以苯胺的氯仿溶液为油相,稀土金属离子Pr3+、Ce3+水溶液为水相,依靠表面活性剂十六烷基三甲基溴化铵(CTAB)自组装形成的反胶束为模板-制备PANI/Ge(OH)3-Pr2O3·3H2O/NanoG复合材料.利用红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和 X-射线衍射(XRD)对该复合材料进行了表征和分析,研究了其导电性能和热性能.结果表明,PANI/Ce(OH)3-Pr2O3·3H2O/NanoG复合材料各相分散均匀,稀土纳米粒子在体系中以棒状的形态分布.热重分析表明,该复合材料的热稳定性明显提高;导电性研究说明,石墨纳米薄片的特殊的结构(较大的径厚比)对其在聚合物基体中形成导电网络具有重要作用;PANI/Pr2O3-Ce(OH)3/NanoG纳米复合材料的渗滤阀值低于1.0wt%.  相似文献   

3.
A new method for the synthesis of exfoliated graphite and polyaniline (PANI)/graphite nanocomposites was developed. Exfoliated graphite nanosheets were prepared through the microwave irradiation and sonication of synthesized expandable graphite. The nanocomposites were fabricated via the in situ polymerization of the monomer at the presence of graphite nanosheets. The as-synthesized graphite nanosheets and PANI/graphite nanocomposite materials were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The conductivity of the PANI/graphite nanocomposites was dramatically increased over that of pure PANI. TGA indicated that the incorporation of graphite greatly improved the thermal stability of PANI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1972–1978, 2004  相似文献   

4.
In this study, the nylon 6/foliated graphite (FG) electrically conducting nanocomposites with a low percolation threshold of less than 0.75 vol % have been prepared via an in situ polymerization approach in the presence of FG nanosheet filler. Based on laser counting, scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction characterization techniques, the structures and morphologies of the nanoscale filling particles and the resulting nanocomposites were examined. Using percolation theory, the conductivity behavior of the nanocomposite samples were modeled and analyzed. Through the use of mean‐field and excluded volume approaches, it was demonstrated that the experimentally observed percolation threshold values could be approximately estimated, and a correlation between the percolation threshold and the aspect ratio of FG particles could be quasi‐quantitatively established. Also, preliminary studies on the effects of FG nanosheets on the thermal properties of the host nylon 6 were performed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2844–2856, 2004  相似文献   

5.
以可膨化石墨为原料,高温处理得到膨化石墨,再经过超声处理,得到纳米薄片石墨。将得到的纳米薄片石墨与甲基丙烯酸甲酯单体在超声作用下预聚,灌模,得到块状的聚甲基丙烯酸甲酯(PMMA)/石墨复合材料。用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、选区电子衍射SAD、红外、热重等分析仪器表征了纳米石墨薄片及PMMA/石墨复合材料。测试了复合材料的力学、电学性能,发现在室温下该复合材料的渗滤阀值为1.3%(wt),且保证石墨含量在1.4%(wt)时,即可保证复合材料具有良好的电学和力学性能。  相似文献   

6.
纳米石墨薄片/聚吡咯复合材料的制备及导电性能   总被引:1,自引:0,他引:1       下载免费PDF全文
膨胀石墨经过超声处理制备了纳米石墨薄片。以其为导电填料,对甲苯磺酸为掺杂剂,FeCl3·6H2O为氧化剂,引发吡咯单体发生原位聚合,制备出纳米石墨薄片/聚吡咯(NanoGs/PPy)复合材料。利用红外光谱(FTIR)、扫描电镜(SEM)和透射电镜(TEM)表征了材料的组成和结构。结果表明,石墨薄片被聚吡咯完全包覆;并且以纳米级尺寸分散在聚吡咯基体中。热失重(TG)分析和电导率测试结果表明,复合材料的耐热性能和导电性能较纯聚吡咯有所提高。  相似文献   

7.
In this study, the influences of expanded graphite oxide (EG) nanosheets presence with and without surfactant on structural and thermal performance of poly(ethylene disulfide) (PEDS)-based nanocomposites are investigated. Sodium dodecylbenzenesulfonate (SDBS) is used as a surfactant for the preparation of modified-EG nanosheets. The structural, morphological, and thermal properties of prepared nanocomposites are studied using X-ray diffraction (XRD), scanning electron microscopy, and differential scanning calorimetry techniques, respectively. XRD patterns of nanocomposites reveal that a high degree of expanded graphite nanosheets dispersion is achieved with and without surface modification using in situ polymerization method. Moreover, the presence of immobilized polysulfide chains near the interface region of nanosheets is suggested as a possible reason for the observed increase in the number of semi-crystalline organic fractions in the structure of PEDS via EG nanosheets incorporation. In addition, the morphology of SDBS-modified-EG loaded nanocomposite shows a smoother fracture surface than unmodified-nanosheets reinforced nanocomposite. Therefore, more interactions between nanosheets and polysulfide chains are expected in the structure of unmodified-EG reinforced nanocomposite. Moreover, thermal resistance and degradation kinetics of prepared nanocomposites are studied using thermogravimetric analysis results and degradation activation energy calculations, respectively. The required activation energy for the degradation process of SDBS-EG loaded nanocomposite is about 140 kJ mol?1 lower than the required degradation activation energy of unmodified-nanosheets reinforced nanocomposite.  相似文献   

8.
Facile synthesis of highly conductive polyaniline/graphite nanocomposites   总被引:1,自引:0,他引:1  
A facile process for the synthesis of exfoliated graphite and polyaniline/graphite (PANI/graphite) nanocomposite was developed. Graphite nanosheets were prepared via the microwave irradiation and sonication from synthesized expandable graphite. The nanocomposites were fabricated via in situ polymerization of aniline monomer in the presence of graphite nanosheets. The nanoscale dispersion of graphite sheets was evidenced by the SEM and TEM examinations. According to the electrical conductivity test, the conductivity of the final PANI/graphite nanocomposites were dramatically increased compared with pristine PANI. From the thermogravimetric analysis, the introduction of graphite exhibits a beneficial effect on the thermal stability of PANI.  相似文献   

9.
This study shows a facile approach for the preparation of CeO2 nanoparticles decorated with porous nitrogen‐doped graphene (NG) nanosheets for effective photocatalytic degradation of methylene blue (MB). NG nanosheets were first synthesized using a hydrothermal method and then nitrogen‐doped graphene‐cerium oxide (NG‐CeO2) was prepared through mixing of cerium nitrate with different concentrations of NG under ultrasonication followed by hydrothermal treatment. The synthesized nanocomposites were characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE‐SEM). The photocatalytic activity of the synthesized nanocomposites was analyzed against MB dye. Results showed that the nanocomposites of NG‐CeO2 have an average particle size of 20 nm. The as‐prepared NG‐CeO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under visible light irradiation, which could be attributed to synergistic effects between the NG nanosheets and CeO2. The quantum of photodegradation increases with the increase of the NG content in the nanocomposites.  相似文献   

10.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by three different intercalating agents: methacrylatoethyl trimethyl ammonium chloride (DMC), dodecylamine (12CNH), and hexadecyl allyl ammonium chloride (HADC). The structures of the nanocomposites were investigated by X-ray diffraction and transmission electron microscopy, while the interaction between PMMA and MMT was characterized by Fourier transform infrared spectroscopy. The molecular mass of the extracted PMMA was measured by gel permeation chromatography. The thermal stability of PMMA/MMT nanocomposites was evaluated by thermogravimetric and differential scanning calorimetry. The results indicated that PMMA/MMT nanocomposites were successfully prepared and the interaction between PMMA and MMT of PMMA/MMT–HADC nanocomposites was the strongest. The thermal stability of the nanocomposites was improved and found to be optimal for PMMA/MMT–HADC with T 10 increasing to 304 °C, 52 °C higher than that of neat PMMA.  相似文献   

11.
磨盘碾磨固相剪切复合技术(S3C)是制备聚合物 石墨导电复合材料的有效途径,所得聚丙烯 膨胀石墨复合材料具有纳米插层复合结构,石墨纳米片层的相互搭接可形成导电网络,具有纳米间隙的石墨插层结构可形成隧道电流,从而大幅度降低复合体系的导电逾渗阈值,在低填充量实现聚合物复合材料高电导性,与熔体共混相比,导电逾渗阈值由4 .3vol%降低到0 . 5 5vol% ,在石墨含量为4 .0 1vol%时,电导率提高10个数量级.  相似文献   

12.
This report describes a new route to covalently bonded polymer–graphene nanocomposites and the subsequent enhancement in thermal and mechanical properties of the resultant nanocomposites. At first, the graphite is oxidized by the modified Hummers method followed by functionalization with Octadecylamine (ODA). The ODA functionalized graphite oxides are reacted with methacryloyl chloride to incorporate polymerizable ? C?C? functionality at the nanographene platelet surfaces, which were subsequently employed in in situ polymerization of methylmethacrylate to obtain covalently bonded poly(methyl methacrylate) (PMMA)–graphene nanocomposites. The obtained nanocomposites show significant enhancement in thermal and mechanical properties compared with neat PMMA. Thus, even with 0.5 wt % graphene nanosheets, the Tg increased from 119 °C for neat PMMA to 131 °C for PMMA–graphene nanocomposite, and the respective storage modulus increased from 1.29 to 2 GPa. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4262–4267, 2010  相似文献   

13.
The synthesis of polyethylene/graphite nanocomposites by in situ polymerization was achieved using the catalytic system Cp2ZrCl2 (bis(cyclopentadienyl)zirconium(IV) dichloride)/methylaluminoxane (MAO). Graphite with nano dimensions, previously treated with MAO, was added into the reactor as filler at percentages of 1, 2, and 5% (w/w). XRD analysis showed that the chemical and thermal treatments employed preserve the structure of the graphite sheets. The formation of graphite nanosheets and nanocomposites was confirmed by TEM and AFM. TEM micrographics showed that the polyethylene grew between the graphene nanosheets, giving intercalated and exfoliated graphite nanocomposites. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 692–698, 2010  相似文献   

14.
Transparent poly(methyl methacrylate) (PMMA)/TiO2 nanocomposites have been prepared by solution mixing PMMA with organically soluble titania xerogel. The organically soluble titania xerogel in the form of amorphous phase has been synthesized via a simple sol-gel method, involving hydrolysis of tetrabutyl titanate (TBT) in trifluoroacetic acid (TFA) and gelation. The obtained PMMA/TiO2 nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), thermogravimetry (TG) and ultraviolet-visible (UV-vis) absorption spectroscopy. The results showed that the interaction between titania nanoparticles and PMMA macromolecular chains led to a homogeneous dispersion of TiO2 in PMMA matrix. The resulting PMMA/TiO2 nanocomposites showed improved thermal stability, high transparency and high UV-shielding efficiency with a small amount of titania xerogel (≤3.0 wt %). The present work is of interest for developing a series of transparent UV-shielding nanocomposites.  相似文献   

15.
Ultrathin films composed of ruthenate nanosheets (RuO(2)ns) were fabricated via electrostatic self-assembly of unilamellar RuO(2)ns crystallites derived by total exfoliation of an ion-exchangeable layered ruthenate. Ultrathin films with submonolayer to monolayer RuO(2)ns coverage and multilayered RuO(2)ns thin films were prepared by controlled electrostatic self-assembly and layer-by-layer deposition using a cationic copolymer as the counterion. Electrical properties of a single RuO(2)ns crystallite were successfully measured by means of scanning probe microscopy. The sheet resistance of an isolated single RuO(2)ns crystallite was 12 kΩ sq(-1). Self-assembled submonolayer films behaved as a continuous conducting film for coverage above 70%, which was discussed based on a two-dimensional percolation model. Low sheet resistance was attained for multilayered films with values less than 1 kΩ sq(-1). Interestingly, the grain boundary resistance between nanosheets seems to contribute only slightly to the sheet resistance of self-assembled films.  相似文献   

16.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites.  相似文献   

17.
A new and efficient method to produce a large quantity of high‐quality and non‐oxidized graphene flakes from powdered natural graphite by using a high‐intensity cavitation field in a pressurized ultrasonic reactor is demonstrated. TEM and selected‐area electron diffraction (SAED) confirmed the ordered graphite crystal structure of graphene. Atomic force microscopy (AFM) was used to examine the thickness of the graphene sheets. The delamination (exfoliation) of natural graphite in the liquid phase depends on the physical effects of ultrasound, which break down the 3D graphite structure into a 2D graphene structure. The prepared graphene is of high purity and without defects because no strongly oxidizing chemicals are used and no toxic products result. TEM shows that graphene nanosheets were produced with sizes in the range of tens to hundreds of square nanometers; these nanosheets were smooth and without any ripples and corrugations. High‐resolution TEM (HRTEM) and SAED analysis confirmed that the products were graphene nanosheets.  相似文献   

18.
The disorderly exfoliated layered double hydroxides/poly(methyl methacrylate) (LDHs/PMMA) nanocomposites were obtained in a two-stage process by the in situ bulk polymerization of methyl methacrylate (MMA) in the presence of 10-undecenoate intercalated LDH (LDH-U). The dispersed behavior of the LDH-U in the PMMA matrix was identified by using X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/visible transmission spectroscopy. All these nanocomposites showed significantly enhancement of glass transition temperature (Tg) and the decomposition temperatures compared to pristine PMMA, as identified in differential scanning calorimetry (DSC) and thermogravimetric (TGA) analysis. The tensile modulus of these nanocomposites was also enhanced by incorporating the LDH-U into the PMMA matrix and increased as the amount of LDH-U increased. According to the analytical method of Ozawa-Flynn, the degradation activation energies of these nanocomposites are higher than that of pristine PMMA.  相似文献   

19.
An exfoliated layered double hydroxides/poly(methyl methacrylate)(LDHs/PMMA)nanocomposite was prepared by in situ solution polymerization of methyl methacrylate(MMA)in the presence of 4-vinylbenzenesulfonate intercalated LDHs(MgAl-VBS LDHs).MgAl-VBS LDHs was prepared by the ion exchange method,and the structure and composition of the MgA1-VBS LDHs were determined by X-ray diffraction(XRD),infrared spectroscopy and elemental analysis.XRD and transmission electron microscopy(TEM)were employed to examine the structure of LDHs/PMMA nanocomposite.It was indicated that the LDHs layers were well exfoliated and dispersed in the PMMA matrix.The grafting of PMMA onto LDHs was confirmed by the extraction result and the weight fraction of grafted PMMA increased as the weight fraction of LDHs in the nanocomposites increased.  相似文献   

20.
A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO2, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {TpMs}NiCl ( 1 ) and Cp2ZrCl2 ( 2 ), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO2, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3506–3512  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号