首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以硅胶为载体, 采用键合接枝法将2-(二苯膦基)乙基三乙氧基硅烷(DPPES)共价键合于硅胶表面, 制备了性能优良的硅胶键合型膦配体(以SiO2(PPh2)表示). 以SiO2(PPh2)为配体, Rh(acac)(CO)2 (acac:乙酰丙酮)为催化前体, 负载铑膦络合物催化剂(SiO2(PPh2)/Rh)在1-辛烯氢甲酰化反应中原位生成. 对生成的负载型催化剂和硅胶键合型膦配体进行了傅里叶变换红外(FTIR)光谱表征, 考察了膦/铑摩尔浓度比([P]/[Rh])、温度等因素对铑催化的长链1-辛烯氢甲酰化反应的影响. 结果表明, 膦/铑摩尔浓度比的增加能显著提高反应的成醛选择性, 降低铑的流失. 在[P]/[Rh]=12、363 K、2.0 MPa、1.5 h 的温和反应条件下, 1-辛烯转化率和成醛选择性分别可达98.4%和95.3%, 其催化活性与DPPES或三苯基膦(TPP)作配体时的均相铑催化相近. 催化剂循环4 次后, 反应活性无明显下降, 1-辛烯转化率均在97.0%左右, 经电感耦合等离子体原子发射光谱(ICP-AES)检测,有机相中铑流失低于0.1%.  相似文献   

2.
研究了在室温离子液体以及室温离子液体/有机溶剂复合介质体系中, Rh(PPh3)3Cl, Ru(PPh3)3Cl2等催化烯烃与三乙氧基硅烷的硅氢加成反应. 实验结果表明, 在乙二醇二甲醚/离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMImBF6) (V/V=1/4)介质中, 于90 ℃下, 己烯与三乙氧基硅烷反应的转化率为100%, β加成物的选择性可达89.0%. 而用Rh(PPh3)3Cl作为反应的催化剂, 在纯离子液体BMImPF6中, 就可以高效催化烯烃与三乙氧基氢硅烷的加成反应. 过渡金属Rh(PPh3)3Cl, Ru(PPh3)3Cl2催化剂/离子液体BMImPF6催化体系, 不仅解决了产物与催化剂分离困难这一难题, 同时, 离子液体BMImPF6的存在提高了过渡金属Rh(PPh3)3Cl, Ru(PPh3)3Cl2催化硅氢加成反应的活性, 特别是β加成物的选择性. 反应结束后, 催化剂/离子液体与产物易于分离, 并且可以重复使用.  相似文献   

3.
单氢钌配合物与水和2,2,2-三氟乙醇的作用机理   总被引:1,自引:0,他引:1  
利用原位1H和31P NMR对单氢钌配合物TpRu(PPh3)(CH3CN)H [Tp=hydrotris(pyrazolyl)borate]与H2O和酸性HOCH2CF3的反应进行了研究, 结果显示相应的反应产物分别是TpRu(PPh3)(CH3CN)(OH) 和TpRu(PPh3)(CH3CN)(OCH2CF3). 观察到反应过程中Ru-H…HOH和Ru-H…HOCH2CF3分子间的氢键作用. 提出了生成TpRu(PPh3)(CH3CN)(OH)和TpRu(PPh3)(CH3CN)(OCH2CF3)的不同作用机理. 在水存在下, TpRu(PPh3)(CH3CN)H 与H2O反应, 经过中间体TpRu(PPh3)(H2O)H和TpRu(PPh3)(OH)(η2-H2)生成产物TpRu(PPh3)(CH3CN)(OH). 而TpRu(PPh3)(CH3CN)H与酸性HOCH2CF3反应时, 单氢配体被质子化形成中间体[TpRu(PPh3)(CH3CN)- (η2-H2)](OCH2CF3), 进而转变成产物TpRu(PPh3)(CH3CN)(OCH2CF3). TpRu(PPh3)(CH3CN)(OCH2CF3)与H2作用, 经中间体TpRu(PPh3)(HOCH2CF3)H生成TpRu(PPh3)(η2-H2)H.  相似文献   

4.
我们在此报道了一种未曾发现的有趣现象:尽管[Au23(SC6H11)16]、Au24(SC2H4Ph)20 (Ph:苯环)、Au36(TBBT)28 (TBBTH:对叔丁基苯硫酚)、Au38(SC2H4Ph)24、混合Aux(SC2H4Ph)y团簇及3 nm的金纳米粒子有不同的组成、结构、尺寸和保护性硫醇配体,但它们在三苯基膦(PPh3)作用下,均能统一地经由亚稳的[Au11(PPh3)8Cl2]2+最终转化为稳定的双二十面体[Au25(PPh3)10(SR)5Cl2]2+ (SR:硫醇配体)。换句话说,三苯基膦是这些硫醇保护的纳米粒子的统一转化器。然而,聚乙烯吡咯烷酮(PVP)/柠檬酸盐(Citrate)保护的金纳米粒子和[Ag25(SPhMe2)18] (Me:甲基)在同样的条件下,却不能转化为[Au25(PPh3)10(SR)5Cl2]2+或[Ag25(PPh3)10(SR)5Cl2]2+,暗示了硫醇保护的金纳米粒子具有与三苯基膦反应的独特性能。另外,我们考察了配体对双二十面体[Au25(PPh3)10(SR)5Cl2]2+团簇荧光性能的影响。  相似文献   

5.
采用原位时间分辨红外光谱和原位显微Raman光谱技术对Ir/SiO2上甲烷部分氧化(POM)制合成气反应的初级产物和反应条件下催化剂表面物种进行了跟踪考察,实验结果表明,在H2预还原的新鲜Ir/SiO2表面,CO是V(CH4):V(O2):V(Ar)=2:1:45混合气反应的初级产物,因而甲烷的直接氧化过程是CO生成的主要途径;而在稳态反应条件下,CO生成的途径可能主要来自CO2和H2O与催化剂表面积碳物种(CHx)和/或CH4的反应.催化剂上生成的积碳可能是导致稳态条件下Ir/SiO2上POM反应机理不同于H2预还原的新鲜催化剂的主要原因.  相似文献   

6.
张春红  张弘  魏爱琳  何旭敏  夏海平 《化学学报》2013,71(10):1373-1378
研究了配位不饱和的钌杂s-顺丁二烯化合物[Ru(CHC(PPh3)CH(2-Py))Cl2PPh3]BF4 (1)与水、甲醇、苯胺和2-巯基吡啶等亲核试剂的[4+1]关环反应, 合成了一系列有趣的钌杂多环化合物[Ru(CHC(PPh3)CHR(2-Py))Cl(PPh3)2]BF4 [R=OH (2), OMe (3), 和NHPh (4)]与[Ru(CHC(PPh3)CH(S(2-Py))(2-Py))PPh3(S(2-Py)]BF4 (5). 此外, 将配位不饱和的钌配合物1与三苯基膦配体反应, 制备了类似于氮杂金属萘的配位饱和化合物[Ru(CHC(PPh3)CH(2-Py))Cl2(PPh3)2]BF4 (6). 6与HBF4反应可生成金属杂环结构类似的分子内含三氯桥的双钌核配合物[{Ru(CHC(PPh3)CH(2-Py))PPh3}2(μ-Cl)3](BF4)3 (7). 以上产物均通过核磁(NMR)与元素分析进行了表征, 并解析了部分产物的X射线单晶结构.  相似文献   

7.
分别以Al2O3, SiO2和C3N4为载体, 通过简单浸渍法制备了3种负载型Pd-Cu催化剂(PC-Al2O3, PC-SiO2, PC-C3N4), 考察了其在室温下富氢气氛中CO优先氧化反应性能. 采用X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 氮气物理吸附仪(N2-physisorption)、 氢气程序升温还原(H2-TPR)、 二氧化碳程序升温脱附(CO2-TPD)、 X射线光电子能谱(XPS)和原位漫反射傅里叶变换红外光谱(In situ DRIFTS)等手段对其进行了表征. 结果表明, 与PC-SiO2和PC-C3N4相比, PC-Al2O3具有更高的CO优先氧化性能. 这是由于PC-Al2O3上形成了大量与Pd物种具有强相互作用的Cu2Cl(OH)3物种; 而PC-SiO2中仅有少量的Cu2Cl(OH)3, 且与Pd物种相互作用较弱; PC-C3N4中Cu物种则更易与C3N4基质配位, 由此削弱了Pd, Cu之间的相互作用. 在反应气氛下PC-Al2O3表面还易形成具有更强CO活化能力的Pd+物种, 通过与大量Cu+物种紧密相互作用, 在一定程度上抑制Pd+被过度还原为Pd0, 从而维持了其催化活性. 与SiO2和C3N4相比, Al2O3更适合负载Pd-Cu用于富氢气氛下CO优先氧化反应.  相似文献   

8.
通过由Fe3(CO)12、RSH和Et3N所形成的[(μ-CO)(μ-RS)Fe2(CO)6]Et3NH于室温下分别与对或间苯二甲酰氯的原位反应,首次合成6个结构新颖的苯二甲酰基桥联铁硫配合物[(μ-RS)·Fe2(CO)6]2(μ-p-OCC6H4CO-p-μ)(R=Et,n-Bu,t-Bu)以及[(μ-RS)Fe2(CO)6]2(μ-m-OCC6H4CO-m-μ)(R=n-Pr,n-Bu,t-Bu).经元素分析、IR光谱及1HNMR表征了它们的结构,并讨论了产物的生成过程.此外,还提出了合成对苯二甲酰氯的一种新方法.  相似文献   

9.
通过溶胶-凝胶法(SG)和水热法(HT)合成了羟磷灰石载体(HAP-SG, HAP-HT), 以浸渍法制备负载型Pd-Cu/HAP催化剂(PC-SG, PC-HT), 并考察其常温常湿条件下CO催化氧化反应性能. 采用电感耦合等离子体发射光谱(ICP-OES)、 N2物理吸附-脱附、 X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 H2程序升温还原(H2-TPR)、 CO2程序升温脱附(CO2-TPD)、 X射线光电子能谱(XPS)和CO原位漫反射傅里叶变换红外光谱(in-situ DRIFTS)等手段对Pd-Cu/HAP催化剂进行了表征. 结果表明, 相比于PC-SG, PC-HT具有较大比表面积和孔容, 含有较多的Cu2Cl(OH)3物种且与Pd物种和载体直接产生了较强的相互作用; 而且PC-HT表面含有较强CO活化能力的Pd+物种和更多具有较强氧化还原性质的Cu+物种, 以及较少数量和较低强度的碱性位点, 因而表现出更加优异的常温常湿条件下CO催化氧化性能.  相似文献   

10.
鉴于富勒烯C60所具有的缺电子烯烃的特性1以及CpCo(PPh3)2可与烯或炔反应生成钴杂环有机化合物,2,3 因此我们设想如果用C60代替烯、炔,令其与η5-RC5H4Co(PPh3)2(1) 或η5-RC5H4Co(PPh3)(PhC≡CPh)(2)反应,则应得到一类新型的富勒烯C60有机钴杂环化合物。然而与这一设想不同的是,上述反应并未得到预期的C60钴杂环有机物,所得到的却是另一类新型的有机钴C60衍生物(η2-C60)(η5-RC5H4)CoPPh3(3).此外,我们发现当32同I2反应时,可生成C60或PhC≡CPh配体被I2置换产物η5-RC5H4Co(PPh3)I2(4)。  相似文献   

11.
A kinetic study of the homogeneous hydroformylation of 1-hexene to the corresponding aldehydes (heptanal and 2-methyl-hexanal) was carried out using a rhodium catalyst formed by addition of 1 equiv. of 1,2-bis(diphenylphosphino)ethane (dppe) to Rh(acac)(CO)2 under mild reaction conditions (80 °C, 1–7 atm H2 and 1–7 atm CO) in toluene; in all cases linear to branched ratios were close to 2. The reaction rate is first-order in dissolved hydrogen concentration at pressures below 3 atm, but independent of this parameter at higher pressures. In both regimes (low and high H2 pressure), the initial rate was first-order with respect to the concentration of Rh and fractional order with respect to 1-hexene concentration. Increasing CO pressure had a positive effect on the rate up to a threshold value above which inhibition of the reaction was observed; the range of positive order on CO concentration is smaller when the total pressure is increased. The kinetic data and related coordination chemistry are consistent with a mechanism involving RhH(CO)(dppe) as the active species initiating the cycle, hydrogenolysis of the acyl intermediate as the rate-determining step of the catalytic cycle at low hydrogen pressure, and migratory insertion of the olefin into the metal-hydride bond as rate limiting at high hydrogen pressure. This catalytic cycle is similar to the one commonly accepted for RhH(CO)(PPh3)3 but different from previous proposals for Rh-diphosphine catalysts.  相似文献   

12.
Rhodium(II) complexes with dioximes [Rh(Hdmg)2(PPh3)]2 [I] (Hdmg=monoanion of dimethylglyoxime) and [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II] catalyse hydroformylation and hydrogenation reactions of 1-hexene at 1 MPa CO/H2 and 0.5 MPa H2 at 353 K, respectively. Hydroformylation with complex [I] produces 94% of aldehydes (n/iso=2.2) and 6% 2-hexene whereas the second catalyst [II] gives ca. 40% of aldehydes (n/iso=2.1) and 60% of 2-hexene. Corresponding Rh(III) complexes are inactive in hydroformylation except of RhH(Hdmg)2(PPh3) [III], which shows activity similar to [I]. Complexes [Rh(Hdmg)2(PPh3)]2 [I], [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II], RhH(Hdmg)2(PPh3) [III] and [Rh(Hdmg)2(PPh3)2]ClO4 [V] catalyse 1-hexene hydrogenation with an average TON ca. 18 cycles/mol [Rh]×min. Complex [II] has also been found to catalyse hydrogenation of cyclohexene, 1,3-cyclohexadiene and styrene.  相似文献   

13.
The reaction of [(CO)PPh3)2Re(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)] (2) with HBF4-Me2O generates [(CO)PPh3)2Re(μ- H)2(μ,η12HNCHPh)Ru(PPh3)2(PhCN)][BF4] (3). Monitoring the reaction by NMR spectroscopy shows the intermediate formation of [(CO)(PPh3)2 HRe(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)][BF4] (4). Attempted reduction of the imine ligand by a nucleophile (H or CN) failed, regenerating 2. Under dihydrogen at 50 atm, 3 is slowly transformed into [(CO)(PPh3)2HRe(μ-H)3Ru(PPh3)2(PhCN)][BF4] (5) with liberation of benzyl amine.  相似文献   

14.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

15.
The electrochemical behaviour of the set of tetracoordinate rhodium(I) complexes [Rh(OO)(CO)L] [OO=MeC(O)CHC(O)Me (acac), L=CO (1), P(NC4H4)3 (2), PPh(NC4H4)2 (3), PPh2(NC4H4) (4), PPh3 (5), PCy3 (6), P(OPh)3 (7) or PPh2(C6H4OMe-4) (8); OO=PhC(O)CHC(O)Me (bac), L=CO (9) or PPh3 (10); OO=PhC(O)CHC(O)CF3(bta), L=CO (11) or PPh3 (12)] and of the pentacoordinate [RhH(CO)L3] [L=P(NC4H4)3 (13), PPh3 (14), P(OPh)3 (15) or P(OC6H4Me-4)3 (16)] and [RhHL4] [L=PPh3 (17) or P(OC6H4Me-3)3 (18)] was studied by cyclic voltammetry and controlled potential electrolysis, in aprotic medium, at a Pt electrode. They present a single-electron oxidation wave (I) (irreversible or quasi-reversible) that can be followed, at a higher potential, by a second and irreversible one (II). The values of first oxidation potential for the tetracoordinate complexes fit the additive Lever's electrochemical parameterisation, and the ligand electrochemical Lever EL and Pickett PL parameters were estimated for the N-pyrrolyl phosphines PPhn(NC4H4)3−n (n=0, 1 or 2) and for the organophosphines PCy3 and PPh2(C6H4OMe-4), the former behaving as weaker net electron donors (the electron donor ability decreases with the increase of the number of N-pyrrolyl groups) than the latter phosphines. The pentacoordinate hydride complexes 13–18 fit a distinct relationship which enabled the estimate of the EL ligand parameter for the phosphites P(OC6H4Me-3)3 and P(OC6H4Me-4)3. Electrochemical metal site parameters were obtained for the square planar and the pentacoordinate Rh(I)/Rh(II) couples and, for the former, the redox potential is shown to present a much higher sensitivity to a change of a ligand than the octahedral redox couples investigated so far. Linear relationships were also observed between the oxidation potential and the PL ligand parameter (for the series [Rh(acac)(CO)L]) or the infrared ν(CO) frequency, and a generalisation of the former type of correlation is proposed for series of square-planar 16-electron complexes [M′SL] with a common 14-electron T-shaped binding metal centre {M′S}. Oxidation of 5 by Ag[PF6] leads to the dimerisation of the derived Rh(II) species.  相似文献   

16.
The structures of HOs3(CO)7(PPh2)(PPh3)(C6H4), HOs3(CO)8(PPh3)(PPh2C6H4) and HOs3(CO)7(PPh2)(PPh2C6H4C6H3) are described, the latter illustrating an intracluster reaction of the coordinated benzyne ligand.  相似文献   

17.
Pentacarbonyl(diethylaminocarbyne)chromium tetrafluoroborate, [(CO)5− CrCNEt2]BF4 (I), reacts with PPh3 with substitution of CO and formation of trans-tetracarbonyl(diethylaminocarbyne)triphenylphosphanechromium tetra-fluoroborate, trans-[PPh3(CO)4CrCNEt2]BF4 (III). Substitution of CO by PPh3 in neutral trans-tetracarbonyl(halo)(diethylaminocarbyne)chromium complexes, trans-X(CO)4CrCNEt2 (IVa: X = Br, IVb: X = I), leads in a reversible reaction to the corresponding tricarbonyl complexes, mer-X(PPh3)(CO)3− CrNEt2 (V), PPh3 occupying the cis-position to the carbyne ligand. With PPh3 in large excess both reactions follow a first-order rate law. This as well as the activation parameters (ΔH≠ = 104–113 kJ mol−1, ΔS≠ = 64–71 J mol−1 K−1) indicate a dissociative mechanism.  相似文献   

18.
The reaction of K[H6ReL2] with [RuHCl(CO)(PPh3)3−x {P(OPri}3)x](L2 = (PMePh2)2, dppe, (AsPh3)2, or (PPh3)2; x = 0, 1 or 2) leads to [L2(CO)HRe(μ-H)3RuH(PPh3)2−y{P(OPri)3}y] (x = 0 or 1, Y = 0; X = 2, Y = 1(L2 = PPh3)) in a first step. Under the reaction conditions most of these complexes react rapidly with the liberated phosphine giving [L2(CO)Re(μ-H)3Ru(PPh3)3−y- {P(OPri)3}y] (L2 = (PMePh2)2 or dppe, Y = 0; L2 = (PPh3)2, Y = 1) as the only iso complexes. The structure of [(PMePh2)2(CO)Re(μ-H)3Ru(PPh3)3] has been establishedby X-ray structure analysis. The complex [(PPh3)2(CO)Re(μ-H)3Ru(PPh3)2(P(OPri)3)] reacts with molecular hydrogen under pressure to generate [L2(CO)HRe(μ-H)3RuH(PPh3)(P(OPri)3) as the sole product.  相似文献   

19.
4-Vinyl pyridine (4-Vp) reacts with RuHClCO(PPh3)3 (I) in THF to give RuHClCO(PPh3)2(4-Vp) (II, which reacts with sodium derivatives of bidentate chelating ligands to afford substitution products, [RuH(CO)(PPh3)2(L)]. The bindentate ligands used are 2-hydroxybenzaldehyde, 2-hydroxy-3-methoxybenzaldehyde, trifluorothenoylacetone and 8-hydroxyquinoline. Insertion reactions of the Ru---H bond of II with activated olefins such as acrylonitrile [giving RuCl(CO)(CH3CHCN)(PPh3)2(4-Vp)], 2-vinyl pyridine, dimethyl fumarate and monobromodiethyl fumarate have been carried out to obtain chelated Ru---C bonded complexes. RuCl2(PPh3)3 reacts with an excess of 4-Vp to give an octahedral ruthenium addition complex containing two vinyl pyridine ligands. The dimer [RuClCO(CH3CHCN)(PPh3)(4-Vp)]2 is obtained by the reaction of [RuClCO(CH3CHCN)(PPh3)2]2 with an excess of 4-Vp. Stereochemical assignments have been made for these new complexes on the basis of IR and 1H NMR data.  相似文献   

20.
The reaction of K[ReH6(PPh3)2] with [RhCl(CO)L2] [L= PPh3, 1,2,5-triphenylphosphole (TPP), or P(OMe)3] leads to the new electronically unsaturated heterobimetallic polyhydride complexes [(CO)(PPh3)2HRe(μ-H)3RhL2] in moderate-to-good yields. The structures of these complexes have been established on the basis of spectroscopic data, especially 1H and 31P NMR. The bridging hydride ligands are fluxional but there is either a slow or nonexistent exchange between terminal and bridging hydrides. For L = PPh3 or TPP, protonation with tetrafluoroboric acid affords quantitatively the cationic complexes [(CO)(PPh3)2HRe(μ-H)3RhHL2]+, isolated as the BF4 or the BPh4 salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号