首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
尹传奇  刘珺  柏正武 《化学学报》2011,69(17):2021-2025
以RuCl3•3H2O为原料合成了水溶性钌配合物[(bipy)2Ru(H2O)2](OTf)2 (bipy=2,2-bipyridine, Otf=triflate), 利用DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene)脱质子化合成了水溶性氢氧根配合物[(bipy)2Ru(H2O)(OH)](OTf). 研究了[(bipy)2Ru(H2O)(OH)](OTf)催化水化乙腈生成乙酰胺的反应. 机理研究表明, 催化循环的关键中间体为氧配位的酰亚胺配合物[(bipy)2Ru(CH3CN)(OCMe=NH)], 经过生成[(bipy)2Ru(k2-N,O-NH=CMeN=CMeO)]、水亲核进攻开环生成{(bipy)2Ru[NH=C(OH)Me](OCMe=NH)}、乙腈取代其NH=C(OH)Me配体产生乙酰胺, 同时再生成[(bipy)2Ru- (CH3CN)(OCMe=NH)]完成催化循环.  相似文献   

2.
采用密度泛函理论方法,研究了钛硅分子筛Ti-MWW与H2O2所形成的钛氧活性中间体的结构,以及溶剂分子吸附对其几何结构和电子结构的影响。结果表明,骨架Ti与H2O2作用生成两种钛氧活性中间体,即五元环的Ti-η1-OOH和三元环的Ti-η2-OOH,骨架Ti中心可再吸附一个溶剂分子,形成六配位络合物结构,不同溶剂分子的吸附能力为H2O > CH3OH > CH3CN。两种钛氧活性中心与溶剂分子的吸附作用略有不同,表现为Ti-η1-OOH > Ti-η2-OOH,而Ti的落位也对吸附效应有很大影响, T1位点的Ti中心与溶剂分子的吸附作用明显强于T3位点的Ti中心。溶剂分子吸附还将影响活性氧的亲电性和催化活性。计算结果表明在Ti-η2-OOH活性中心吸附CH3CN可降低氯丙烯环氧化反应的活化能。  相似文献   

3.
共沉淀法制备CeZrYLa+LaAl 复合氧化物载体, 等体积浸渍法制备了Pt 催化剂, 用于研究理论空燃比天然气汽车(NGVs)尾气净化反应中CH4与NO的反应规律. 并考察了10% (体积分数, φ)H2O和计量比O2对CO2存在时的CH4+NO反应的影响. 结果表明: 对于不同条件下的NO+CH4反应, 主要生成N2和CO2, 高温区有CO生成. 低温区无O2时可以生成N2O, 有O2时可以生成NO2; 添加10% (φ)的H2O后, CH4 转化活性降低, NO转化活性基本不变, 这是由于H2O减弱了CH4与CO2的重整反应, 但是对CH4与NO的反应基本没有影响; 添加计量比的O2后, CH4转化活性提高, 而NO转化活性降低, 这是由于O2和NO之间存在竞争吸附, CH4被O2氧化为主要反应, 从而减弱了NO的转化; 同时添加计量比的O2和10% (φ) H2O, CH4与CO2的重整反应受到抑制,CH4与NO的反应、甲烷蒸汽重整反应和甲烷被O2氧化反应同时发生, CH4和NO的转化活性均提高.  相似文献   

4.
朱强  宫红  姜恒  王锐 《合成化学》2016,24(10):856-860
以过渡金属甲基磺酸盐[Mn(CH3SO3)2·2H2O, Cu(CH3SO3)2·4H2O, Co(CH3SO3)2·4H2O和Zn(CH3SO3)2·4H2O]为催化剂,在室温条件下催化醇的四氢吡喃化反应,并对反应条件进行了优化。结果表明:当醇用量为30 mmol,醇和3,4-二氢吡喃摩尔比为1.0 :1.1,甲基磺酸盐用量为1 mmol,二氯甲烷20 mL时,可高效催化醇的四氢吡喃化反应。与路易斯酸催化活性相比,过渡金属甲基磺酸盐催化醇的四氢吡喃化反应效果最好,催化酚的效果较差。用Mn(CH3SO3)2·2H2O和Cu(CH3SO3)2·4H2O催化正丁醇的四氢吡喃化反应,重复使用5次,收率分别为89%和92%。  相似文献   

5.
采用CCSD(T)//B3LYP/6-311+G(d,p)方法研究了H2O及甲酸等6种有机酸对CH3CHOO与H2O加成反应的催化作用。结果表明,非催化反应存在双质子迁移和加成反应2条通道,其中加成反应为优势通道。其加成机理为H2O中OH加到CH3CHOO的α-C上,同时H2O中另一个H迁移到CH3CHOO的端O上。催化剂H2O及有机酸以氢键复合物的形式参与反应促进了H质子转移,可降低基元反应能垒和表观活化能,且催化效应与有机酸的强度成正比。例如,当分别用H2O(pKa=15.7)、甲酸(pKa=3.75)和草酸(pKa=1.23)催化时,生成syn-HAHP的基元反应能垒由非催化的69.12 kJ·mol-1分别降至40.78、18.88和10.61 kJ·mol-1。非催化反应具有正的表观活化能,而所有催化反应则均具有负的表观活化能。  相似文献   

6.
通过水热/溶剂热合成的方法制备了3个Zn(Ⅱ)/Co(Ⅱ)配合物{[Zn(H2L)(H2O)3]·H2O·0.5H4L}n(1)、{[Co(L)0.5(4,4'-bpy)]·0.5H2O}n(2)和{[Co(L)0.5(pbmb)(H2O)]·H2O}n(3)(H4L=5,5'-(hexane-1,6-diyl)-bis(oxy)diisophthalic acid,4,4'-bpy=4,4'-bipyridine,pbmb=1,1'-(1,3-propane)bis-(2-methylbenzimidazole))。结构分析表明配合物1为一维链结构。2为拓扑符号为(64·7·8)(6·72)的三重穿插网络结构。3是拓扑符号为(4·62)(42·62·82)的(3,4)-连接的二维网络结构。配合物1呈现出较好的荧光性质。  相似文献   

7.
在溶剂热条件下制备了系列新配合物:[Cr2(tpc)2(HCOO)2(OH)2]·4H2O (1)、[Ba(tpc)2(H2O)2]n (2)、[Zn2(tpc)2(NO3)2]n (3)、[Pb(Htpc)(NO3)2]·2H2O (4)和[Rh(Htpc)Cl3]·CH3OH·H2O (5)(Htpc=2,2′∶6,2″-三联吡啶-4-羧酸)。X射线单晶衍射分析表明,有机配体呈4种不同的配位方式;配合物1~5通过C—H…O/N氢键和π…π相互作用形成了新颖的超分子网络。研究了这些配合物的发光性能。在365 nm紫外辐射下,晶体2~5分别呈现绿色、蓝色...  相似文献   

8.
鉴于富勒烯C60所具有的缺电子烯烃的特性1以及CpCo(PPh3)2可与烯或炔反应生成钴杂环有机化合物,2,3 因此我们设想如果用C60代替烯、炔,令其与η5-RC5H4Co(PPh3)2(1) 或η5-RC5H4Co(PPh3)(PhC≡CPh)(2)反应,则应得到一类新型的富勒烯C60有机钴杂环化合物。然而与这一设想不同的是,上述反应并未得到预期的C60钴杂环有机物,所得到的却是另一类新型的有机钴C60衍生物(η2-C60)(η5-RC5H4)CoPPh3(3).此外,我们发现当32同I2反应时,可生成C60或PhC≡CPh配体被I2置换产物η5-RC5H4Co(PPh3)I2(4)。  相似文献   

9.
采用原位时间分辨红外光谱和原位显微Raman光谱技术对Ir/SiO2上甲烷部分氧化(POM)制合成气反应的初级产物和反应条件下催化剂表面物种进行了跟踪考察,实验结果表明,在H2预还原的新鲜Ir/SiO2表面,CO是V(CH4):V(O2):V(Ar)=2:1:45混合气反应的初级产物,因而甲烷的直接氧化过程是CO生成的主要途径;而在稳态反应条件下,CO生成的途径可能主要来自CO2和H2O与催化剂表面积碳物种(CHx)和/或CH4的反应.催化剂上生成的积碳可能是导致稳态条件下Ir/SiO2上POM反应机理不同于H2预还原的新鲜催化剂的主要原因.  相似文献   

10.
赖祖亮  武培怡 《化学学报》2006,64(23):2357-2364
运用衰减全反射二维相关傅立叶变换红外光谱(ATR-2D-FTIR), 以浓度为外扰因素, 对乙腈(CH3CN)-水(H2O)-高氯酸钠(NaClO4)体系存在的一些弱作用力进行了研究. 结果表明体系中乙腈的CH3与水分子OH存在相互作用. 无机盐高氯酸钠的加入破坏了水分子的氢键结构, 阴阳离子分别与水发生相互作用. Na与氢键缔合水分子发生作用, 而非自由水分子. 无机盐的加入对体系中微观结构变化产生较大影响.  相似文献   

11.
钌配合物催化氢化CO2生成甲酸反应中的醇促进效应   总被引:1,自引:0,他引:1  
在水合钌配合物[TpRu(PPh3)2(H2O)]BF4 [Tp=hydrotris(pyrazolyl) borate]催化氢化二氧化碳生成甲酸的反应中观察到醇对反应的促进作用. 利用原位高压核磁共振跟踪催化反应过程的结果表明, 在甲醇溶液中, [TpRu(PPh3)2(H2O)]BF4在三乙胺和H2作用下转化为TpRu(PPh3)2H. 二氧化碳插入Ru—H生成甲酸根配合物TpRu(PPh3)2(η1-OCHO)•HOCH3, 其中的甲酸根配体与醇分子间形成分子间氢键. 该甲酸根配合物随即转化为另一个甲酸根配合物TpRu(PPh3)(CH3OH)(η1-OCHO)并与之达成平衡, 后者由于存在分子内氢键而稳定. 考虑到这两个甲酸根配合物在催化反应中的稳定性, 它们应该不在主要的催化循环内. 提出了配合物[TpRu(PPh3)2(H2O)]BF4在几种醇溶液中催化氢化二氧化碳生成甲酸的催化循环机理, 催化循环的关键中间体可能是TpRu(PPh3)(ROH)H. 该中间体能同时转移负氢及醇配体中的氢质子到接近的二氧化碳分子上生成甲酸, 并吸收H2生成过渡态TpRu(PPh3)(OR)(H2). 该过渡态经过σ-复分解反应重新生成TpRu(PPh3)(ROH)H完成催化循环.  相似文献   

12.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

13.
The methylidene complex [(η-C5H5)Re(NO)(PPh3)(CH2)]+PF6?(I) yields kinetically labile sulfonium salts when treated with CH3SCH3, CH3SCH2C6H5, and (η-C5H5)Re(NO)(PPh3)(CH2SCH3) (V);the binuclear adduct formed in the latter case, [(η-C5H5)Re(NO)(PPh3)CH2]2S+CH3 (VI), is substantially more stable than the others and undergoes hydride transfer disproportionation to [(η-C5H5)Re(NO)(PPh3)(CHSCH3)]+PF6?(VII) and (η-C5H5)Re(NO)(PPh3)(CH3) (VIII) when heated.  相似文献   

14.
A novel, useful in situ synthesis for NHC nickel allyl halide complexes [Ni(NHC)(η3-allyl)(X)] starting from [Ni(CO)4], NHC and allyl halides is presented. The reaction of [Ni(CO)4] with (i) one equivalent of the corresponding NHC and (ii) with an excess of the corresponding allyl chloride at room temperature leads with elimination of carbon monoxide to complexes of the type [Ni(NHC)(η3-allyl)(X)]. This approach was used to synthesize the complexes [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 2 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 3 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 4 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Br)] ( 5 ), [Ni(Me2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 6 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 7 ). The complexes 1 to 7 were characterized using NMR and IR spectroscopy and elemental analysis, and the molecular structures are provided for 2 and 7 . The allyl nickel complexes 1 – 7 are stereochemically non-rigid in solution due to (i) NHC rotation about the nickel-carbon bond, (ii) allyl rotation about the Ni–η3-allyl axis and (iii) π–σ–π allyl isomerization processes. The allyl halide complexes can be methylated as was demonstrated by the methylation of a number of the complexes [Ni(NHC)(η3-allyl)(X)] with methylmagnesium chloride or methyllithium, which led to isolation of the complexes [Ni(Me2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 8 ), [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 9 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 10 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 11 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Me)] ( 12 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 13 ). These complexes were fully characterized including X-ray molecular structures for 10 and 11 .  相似文献   

15.
Treatment of [Ru(CHCHCH2PPh3)X(CO)(PPh3)2]+ (X=Cl, Br) with KTp (Tp=hydridotris(pyrazolyl)borate) and NaBPh4 produced [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4. Reaction of RuHCl(CO)(PPh3)3 with HCCCH(OEt)2 produced Ru(CHCHCH(OEt)2)Cl(CO)(PPh3)2, which reacted with KTp to give TpRu(CHCHCHO)(CO)(PPh3). Treatment of [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4 with NaN(SiMe3)2 and benzaldehyde produced TpRu(CHCHCHCHPh)(CO)(PPh3). The later complex was also produced when TpRu(CHCHCHO)(CO)(PPh3) was treated with PhCH2PPh3Cl/NaN(SiMe3)2. The bimetallic complex [TpRu(CO)(PPh3)]2(μ-CHCHCHCHC6H4CHCHCHCH) was obtained from the reaction of [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4 with NaN(SiMe3)2 and terephthaldicarboxaldehyde.  相似文献   

16.
The feasibility of oxidative addition of the P−H bond of PHPh2 to a series of rhodium complexes to give mononuclear hydrido-phosphanido complexes has been analyzed. Three main scenarios have been found depending on the nature of the L ligand added to [Rh(Tp)(C2H4)(PHPh2)] (Tp= hydridotris(pyrazolyl)borate): i) clean and quantitative reactions to terminal hydrido-phosphanido complexes [RhTp(H)(PPh2)(L)] (L=PMe3, PMe2Ph and PHPh2), ii) equilibria between RhI and RhIII species: [RhTp(H)(PPh2)(L)]⇄[RhTp(PHPh2)(L)] (L=PMePh2, PPh3) and iii) a simple ethylene replacement to give the rhodium(I) complexes [Rh(κ2-Tp)(L)(PHPh2)] (L=NHCs-type ligands). The position of the P−H oxidative addition–reductive elimination equilibrium is mainly determined by sterics influencing the entropy contribution of the reaction. When ethylene was used as a ligand, the unique rhodaphosphacyclobutane complex [Rh(Tp)(η1-Et)(κC,P-CH2CH2PPh2)] was obtained. DFT calculations revealed that the reaction proceeds through the rate limiting oxidative addition of the P−H bond, followed by a low-barrier sequence of reaction steps involving ethylene insertion into the Rh−H and Rh−P bonds. In addition, oxidative addition of the P−H bond in OPHPh2 to [Rh(Tp)(C2H4)(PHPh2)] gave the related hydride complex [RhTp(H)(PHPh2)(POPh2)], but ethyl complexes resulted from hydride insertion into the Rh−ethylene bond in the reaction with [Rh(Tp)(C2H4)2].  相似文献   

17.
Reaction of [RuCl(CNN)(dppb)] ( 1‐Cl ) (HCNN=2‐aminomethyl‐6‐(4‐methylphenyl)pyridine; dppb=Ph2P(CH2)4PPh2) with NaOCH2CF3 leads to the amine‐alkoxide [Ru(CNN)(OCH2CF3)(dppb)] ( 1‐OCH2CF3 ), whose neutron diffraction study reveals a short RuO ??? HN bond length. Treatment of 1‐Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)] ? (EtOH)n ( 1‐OEt?n EtOH ), which equilibrates with the hydride [RuH(CNN)(dppb)] ( 1‐H ) and acetaldehyde. Compound 1‐OEt?n EtOH reacts reversibly with H2 leading to 1‐H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1‐OEt?n EtOH and 1‐H reveal hydrogen bond interactions and exchange processes. The chloride 1‐Cl catalyzes the hydrogenation (5 atm of H2) of ketones to alcohols (turnover frequency (TOF) up to 6.5×104 h?1, 40 °C). DFT calculations were performed on the reaction of [RuH(CNN′)(dmpb)] ( 2‐H ) (HCNN′=2‐aminomethyl‐6‐(phenyl)pyridine; dmpb=Me2P(CH2)4PMe2) with acetone and with one molecule of 2‐propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru‐hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key “amide” intermediate. Regeneration of the hydride complex may occur by reaction with 2‐propanol or with H2; both pathways have low barriers and are alcohol assisted.  相似文献   

18.
Tetracloro-o-benzoquinone reacts with (diphenylacetylene)bis(tirphenylphosphine)platinum(0) to give the novel platinum(II) diphenylacetylene complex, Pt(C6Cl4O2)PhCCPh)(PPh3), (I), which reacts with hydrogen halides to give the compelexes cis-PtX2(PhCCPh((PPh3), (X = Cl or Br). Hydrogen chloride also readily removes the tetrachloro-o-benzoquinoneligand from the adducts Ni(C6Cl4O2)(Ph2PCH2CH2PPh2) and M(C6Cl4O2)(PPh3)2, (M = Pd or Pt) but it has no reaction upon Ir(Cl)(C6Cl4O2)(CO)(PPh3)2 at room temperature. The acetylene in (1) is susceptible to nucleophilic attact and reaction with diethylamine gives the vinyl adduct Pt(C6Cl4O2)(CPhCPh)NHEt2)(PPh3). Other reactions of (I) have also been studied. Attemps to prepare other olefin or acetylene complexes of platinum(II) by the action of tetrachlor-o-benzoquinone on the complexes Pt(L)(PPh3)2, (L = PhCCH,(Et)(Me)(HO)CCCC(OH)(Me)(Et), HOCH2OH, CF3CCCF3, CF2CF2, CF2CH2 or trans-PhCHCHPh) are also described.  相似文献   

19.
Heteroarm H‐shaped terpolymers, [(poly(L ‐lactide))(polystyrene)]poly(ethylene oxide)[(polystyrene)(poly(L ‐lactide))], [(PLLA)(PS)]PEO[(PS)(PLLA)], in which PEO acts as a main chain and PS and PLLA as side arms, have been successfully prepared via combination of reversible addition–fragmentation transfer (RAFT) polymerization and ring‐opening polymerization (ROP). The first step is the synthesis of the PEO capped with one terminal dithiobenzoate group and one hydroxyl group at every chain end, [(HOCH2)(PhC(S)S)]PEO[(S(S)CPh)(CH2OH)] from the reaction of carboxylic acid with ethylene oxide. Then, the RAFT polymerization of styrene (St) was carried out using [(HOCH2)(PhC(S)S)]PEO[(S(S)CPh)(CH2OH)] as RAFT agent and AIBN as initiator, and the triblock copolymer, [(HOCH2)(PS)]PEO[(PS)(CH2OH)], was formed. Finally, the heteroarm H‐shaped terpolymers, [(PLLA)(PS)]PEO[(PS)(PLLA)], were produced by ROP of LLA, using triblock copolymer, [(HOCH2)(PS)]PEO[(PS)(CH2OH)], as macroinitiator and Sn(Oct)2 as catalyst. The target products and intermediates were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 789–799, 2007  相似文献   

20.
A new family of three-legged piano stool structured organometallic compounds containing the η5-cyclopentadienylruthenium(II)/iron(II) fragments {M(η5-C5H5) (DPPE)}+, {Ru(η5-C5H5)(PPh3)2}+ and {Ru(η5-C5H5)(TMEDA)}+ with coordinated thiophene based chromophores, namely 5-(2-thiophen-2-yl-vinyl)-thiophene-2-carbonitrile (L1) and 5-[2-(5-Nitro-thiophen-2-yl)-vinyl]-thiophene-2-carbonitrile (L2) has been synthesized and fully characterized by 1H, 13C, 31P NMR, IR and UV-Vis spectroscopies. Also, electrochemical studies were carried out by cyclic voltammetry and all experimental data are interpreted and compared with related compounds under the scope of NLO properties. Compounds [Ru(η5-C5H5)(DPPE)(NC(C4H2S)C(H)C(H)(C4H3S))][CF3SO3] (1′Ru) [Fe(η5-C5H5)(DPPE)(NC(C4H2S)C(H)C(H)(C4H3S))] [PF6] (1Fe) and [Ru(η5-C5H5)(DPPE)(NC(C4H2S)C(H)C(H)(C4H2S)NO2)][CF3SO3] (4′Ru) were also crystallographically characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号