首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the linear response theory, vibrational and dielectric properties are calculated for c-BN, w-BN and h-BN. Calculations of the zone-center optical-mode frequencies (including LO-TO splittings) are reported. All optic modes are identified and excellent agreement is found between the theory and experimental results. The static dielectric tensor is decomposed into contributions arising from individual infrared-active phonon modes. It is found that all the structures have a smaller lattice dielectric constants than those of the electronic contributions. Finally, the infrared reflectance spectrums are presented. Our theoretical results indicate that w-BN shows a similar reflectivity spectrum as c-BN. It is difficult to tell apart the wurtzite structure from the zinc blende phase by IR spectroscopy.  相似文献   

2.
Mg2FeH6, which has one of the highest hydrogen storage capacities among Mg based 3d-transitional metal hydrides, is considered as an attractive material for hydrogen storage. Within density-functional perturbation theory (DFPT), we have investigated the structural, vibrational and thermodynamic properties of Mg2FeH6. The band structure calculation shows that this compound is a semiconductor with a direct X-X energy gap of 1.96 eV. The calculated phonon frequencies for the Raman-active and the infrared-active modes are assigned. The phonon dispersion curves together with the corresponding phonon density of states and longitudinal-transverse optical (LO-TO) splitting are also calculated. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as free energy, internal energy, entropy and heat capacity within the quasi-harmonic approximation based on the calculated phonon density of states.  相似文献   

3.
In this work, we investigate the structural, dynamic and thermodynamic properties of NaMgH3, devoted for hydrogen storage. Density functional theory using pseudopotential methods and generalized gradient approximation has been used. A good agreement between the calculated structural parameters and the experimental data was found. A linear-response approach for the density functional theory is used in order to derive the Born effective charge tensors, the dielectric permittivity tensors, the phonon frequencies at the center of the Brillouin zone, the phonon-dispersion curves and the corresponding density of states for NaMgH3 material. The obtained phonon frequencies at the zone center (Γ point) for the Raman-active and infrared-active modes are analyzed. Thermodynamic functions using the phonon density of states are also calculated.  相似文献   

4.
S Mohan  A Sudha 《Pramana》1991,37(4):327-332
Using Wilson’s F-G matrix method a normal co-ordinate analysis of the spectral frequencies and form of the zero-wave vector vibrations of the high temperature superconductor, orthorhombic DyBa2Cu3O7 has been performed. The vibrational frequencies and the potential energy distribution of the 21 infrared-active and 15 Raman-active modes are presented. The potential constants employed here are presented and evaluated vibrational frequencies are compared with the available experimental values.  相似文献   

5.
The first-principles total energy calculations with the generalised gradient approximation and the plane-wave pseudopotential method have been employed to investigate the structural, electronic and dynamical properties of Li2TiO3 (lithium titanate). The atomic structure is fully relaxed, and the structural parameters are found to differ by less than 1% from the experimental data. The indirect band-gap with 3.49 eV is predicted from the band structure calculations of this compound. The calculated phonon frequencies at the ??-point for the Raman-active and the infrared-active modes are presented and assigned. The phonon dispersion curves are also calculated along high symmetry lines in the Brillouin zone (BZ). Furthermore, the thermodynamic functions have been worked out using the corresponding phonon density of states, and the results indicate that they are in good agreement with available experimental values.  相似文献   

6.
基于力常数模型计算了一系列扶手椅型、锯齿型和手性单壁BC3纳米管的声子色散关系.描述了单壁BC3纳米管结构的表征方式,比较详细地给出了其结构、对称性和晶格动力学分析.基于数值计算结果,讨论了拉曼活性模和红外活性振动模的频率与管径的关系.由分析结果做出推断,BC3纳米管的拉曼光谱和红外光谱比单壁碳纳米管更为复杂. 关键词: 3纳米管')" href="#">BC3纳米管 声子色散关系 晶格动力学  相似文献   

7.
Vibrational and dielectric properties of YAlO3 are investigated within the framework of density functional perturbation theory. The calculated zone center phonon frequencies and dielectric constants are in good agreement with available experimental data. Based on the theoretical values of the dielectric constants and the highest longitudinal IR phonon energy and using the phenomenological model of Lempicki and Wojtowicz, we investigate the scintillation properties of the YAlO3.  相似文献   

8.
The structural, magnetic, electronic, vibrational, thermodynamic and elastic properties of plutonium sesquicarbide (Pu2C3) are investigated based on density functional theory. The use of the Hubbard term to describe the 5f electrons of plutonium is discussed according the lattice parameters and magnetism. The calculated lattice constants, magnetism and density of states agree well with the experimental data or other theoretical calculations. The Pu-C bonds of Pu2C3 have a mixture of covalent character and ionic character, while covalent character is stronger than ionic character. The phonon frequencies and the assignment of infrared-active, Raman-active and silent modes at Γ point are obtained. Furthermore, the enthalpy difference H-H298, entropy S, heat capacity and linear thermal expansion coefficient α of Pu2C3 have been calculated and compared with the available data. Lastly, the calculated elastic properties predict that Pu2C3 is ductile metal. In addition, the effect of spin-orbit coupling on the structural, magnetic, and electronic properties of Pu2C3 has been discussed. We hope that our results can provide a useful reference for further theoretical and experimental research on Pu2C3.  相似文献   

9.
Yttrium oxide is an important laser and infrared optical material. The structural, vibrational and dielectric properties of Y 2O3 are calculated from first principles using the plane-wave pseudopotential method. The dielectric permittivity tensors, infrared-active phonon frequencies at the Brillouin zone center and the LO/TO splitting are reported within the framework of density functional perturbation theory. Contributions to the static dielectric constant from each infrared-active mode are presented. It is shown that Y 2O3 has an electronic dielectric constant larger than that of the lattice contributions. Dielectric, refractive index, extinction coefficient and infrared reflectance spectra of Y 2O3 are given, and the figures suggest that Y 2O3 presents good transmission properties in the spectrum range above 800 cm?1 or below 400 cm?1.  相似文献   

10.
First-principles calculations of the crystal structure and the elastic properties of RuB2 have been carried out with the plane-wave pseudopotential density functional theory method. The calculated values are in very good agreement with experimental data as well as with some of the existing model calculations. The elastic constants cij, the aggregate elastic moduli (B, G, E), Poisson's ratio, and the elastic anisotropy with pressure have been investigated. Through the quasi-harmonic Debye model considering the phonon effects, the isothermal bulk modulus, the thermal expansions, Grüneisen parameters, and Debye temperatures depending on the temperature and pressure are obtained in the whole pressure range from 0 to 60 GPa and temperature range from 0 to 1100 K as well as compared to available data.  相似文献   

11.
In the present paper, we synthesized the novel calcium germanate (CaGeO3) microtubes using electrospinning. The wollastonite structure and morphology of the novel CaGeO3 microtubes have been confirmed by X-ray diffraction and scanning electron microscopy, respectively. The Raman and infrared spectra of this oxide were recorded and analyzed at room temperature. Then, nuclear site group analysis was used to calculate the total number of normal vibrational modes, Raman-active and infrared-active optical phonon modes.  相似文献   

12.
The optical phonon spectrum of the semiconductor Cu2SnTe3, that crystallizes in the orthorhombic structure with space group Imm2 (), have been studied by measuring unpolarized Raman scattering between 10 and 300 K. The experimental frequencies of the phonon modes observed were compared to those calculated by using simplified lattice dynamical models reported in the literature. From combined analysis of these results together with the factor group analysis of the zone-center vibrational modes, valuable information about these modes was obtained and their possible symmetry was assigned. A1 modes at 71, 123, 167, 176 and 190 cm−1; A2 modes 115 and 131 cm−1; B1 modes at 76, 142 and 152 cm−1; B2 modes at 89, 100 and 206 cm−1; a overtone at 246 cm−1, and combinations at 218, 270 and 292 cm−1; have been observed in this compound.  相似文献   

13.
《光谱学快报》2013,46(4-5):505-519
Abstract

The molecular structure and harmonic vibrational frequencies of cyclopropylamine have been calculated using the B3LYP density functional method with the 6‐31G(2d,2p) basis set. The scaled DFT force field gives very good reproduction of the experimental vibrational frequencies. Several of the vibrational fundamental modes assigned previously are reassigned on the basis of the B3LYP/6‐31G(2d,2p) method and the scaled force field calculations. The optimized scaling factors were used to scale the B3LYP/6‐31G(2d,2p) force field of cyclopropane and cyclopropylamine (–ND2) molecules.  相似文献   

14.
CaGa2O4 nanofibers, Ca2GeO4 microfibers, CaIn2O4 nanorods, and CaSnO3 nanofibers were synthesized by using an electrospinning technique. Structures and morphologies of the as-synthesized oxides were characterized by X-ray diffraction and scanning electron microscopy, respectively. Raman and infrared spectra were also recorded and analyzed at room temperature. More significantly, nuclear site group analysis was carried out and the number of normal vibrational modes, Raman-active, and infrared-active optical phonon modes were obtained by theoretical calculation. Finally, vibrational assignments of the observed Raman peaks and infrared absorption bands were given based on the group theoretical analysis and experimental data from literature.  相似文献   

15.
Ab initio total energy calculations have been performed for superconducting GdBa2Cu3O7 and insulating PrBa2Cu3O7 using the full-potential linear augmented plane-wave method in the local density approximation (LDA) and generalized gradient approximation (GGA). The comparison of the calculated unit cell volume and lattice parameters with the experimental data indicates the improvement of these parameters in the GGA relative to LDA. LDA and GGA give the equilibrium unit cell volume about 6% smaller and 1.25% larger than the experimental data, respectively for both systems. Thus frozen phonon calculations have been performed to determine the eigenvalues and eigenvectors of the k=0 Ag modes of the two systems in equilibrium structure have been obtained in GGA. The calculated frequencies in the GGA are in good agreement with the other LDA calculations for similar systems. Comparison of computational data with experimental data indicates that calculations determine the frequencies about ten percent below the experimental data. Even by improving LDA to GGA in these calculations, the calculated phonon frequencies have remained almost ten percent below the experimental data, even though the calculated unit cell volumes are nearly equal to the experimental data. So, applying GGA has not considerably decreased the difference between the computational and experimental data. The effect of Pr doping on the eigenvalues and eigenvectors have also been investigated.  相似文献   

16.
Near-normal incident infrared reflectivity spectra of (100) MgAl2O4 spinel single crystal have been measured at different temperatures in the frequency region between 50 and 6000 cm^-1. Eight infrared-active phonon modes are identified, which are fitted with the factorized form of the dielectric function. The dielectric property and optical conductivity of the MgAl2O4 crystal are analysed. From TO/LO splitting, the effective Szigeti charges and Born effective charges at different temperatures are calculated for studying the ionicity and the effect of polarization. Based on the relationship between the (LO-TO)1 splitting, which represents the transverse and longitudinal frequencies splitting of the highest energy phonon band in the reflectivity spectrum, and the ionic-covalent parameter, the four main phonon modes are assigned. MgA1204 can be considered as a pure ionic crystal and its optical characters do not change with decreasing temperature, so it may be used as a suitable substrate for high-Tc superconducting thin films.  相似文献   

17.
A first-principles investigation of cuprite crystals (Cu2O and Ag2O) has been performed. For Cu2O, the calculated frequencies at the Γ point of the Brillouin zone are in very good agreement with the experimental frequencies. For Ag2O, the presence of Eu and F2u vibrational modes with negative frequencies indicates a low temperature phase transition, in agreement with recent high resolution X-ray and neutron diffraction measurements. The energy scanning along these two modes shows a double-well potential, within which only the Ag atoms vibrate. As a result, the origin of the phase transition can be attributed to displacive disorder of the Ag atoms.  相似文献   

18.
The neutron inelastic scattering spectrum of neopentane has been measured between 10 and 2000 cm?1. A partial reassignment of the normal modes of vibration is presented. A vibrational analysis based on the Snyder and Schachtschneider valence force field has been carried out using the frequencies of neopentane and neopentane-d12. The calculated neutron spectrum, using our new force field, is found to be in good agreement with the observed neutron data.  相似文献   

19.
The phonon dispersion curves in three symmetry directions of phase I of CsPbCl3 superionic conductor are calculated by applying the de'Launay angular force model. With the third neighbor interaction between Cl-Cl ions, considerable agreements are obtained for all phonon frequencies at zone center (ZC) and also for the acoustic modes in the Δ direction. Two high energy phonon modes at ZC-point are reasonably understood.  相似文献   

20.
Parameters of the crystal structure and phonon spectra for orthorhombic cadmium titanate with space group Pbnm and its two possible ferroelectrically distorted phases (with space groups Pbn21 and Pb21 m) were calculated from first principles within the density functional theory. The obtained structural parameters and frequencies of Raman- and infrared-active modes are in good agreement with available experimental data for the Pbnm phase. Expansion of the total energy in a Taylor series of two order parameters showed that the ground state of the system corresponds to the Pbn21 structure into which the Pbnm phase transforms through a second-order phase transition without intermediate phases. A substantial discrepancy between calculated and experimentally observed lattice distortions and spontaneous polarization in the polar phase was explained by quantum fluctuations, as well as by existence of twins and competing long-period structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号