首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thorough understanding of turbulent reacting flows is essential to the continued development of practical combustion systems. Combustor codes can be validated using data such as those generated in this study of a vortex interacting with a nonpremixed, opposed-jet hydrogen-air flame. When experimental results are compared with model predictions, the underlying flowfield must be matched carefully. Since the vortex-injection process used in the present experiments can result in many types of vortices, including multiple vortices, restrictions on the experimental operation of the burner are required as well as careful vortex characterization. Vortex-characterization data are acquired using digital, two-color particle-image velocimetry (PIV), and the hydroxyl (OH) layer produced by the flame is imaged using planar laser-induced fluorescence (PLIF). The PIV and OH PLIF measurements are performed simultaneously. Good agreement with previous numerical-modeling predictions is obtained when experiments and computations are performed using similar vortex conditions.  相似文献   

2.
Interactions of vortices and flame fronts may be considered as the basic structural elements of turbulent combustion. Additionally, they play an important role in flame instabilities as well as extinction and ignition processes. An ideal geometry to study these interactions is the counterflow diffusion burner with an additional actuator-driven nozzle for the generation of a vortex ring. This burner has already been well-characterized by other methods including CARS, LDA and PLIF. We present first quantitative measurements of minor species concentration in this flame using a short-pulse laser and time- and spatially resolved fluorescence detection with a streak camera. Quench-free OH concentrations are obtained by analysis of the time-resolved profiles. The high power density of the laser pulses allowed linewise detection of hydrogen using a three-photon excitation scheme. Simultaneously, shape and position of the vortex was monitored using two-dimensional detection of flame emissions. Spatially resolved concentration profiles of H and OH are presented for different interaction heights and times in the vortex. For steady flames, comparisons with model calculations are shown. Received: 19 July 2000 / Revised version: 13 December 2000 / Published online: 21 February 2001  相似文献   

3.
A strategy of diagnostics of ultra-lean combustion based on acetone-OH simultaneous PLIF is presented. Acetone seeded in the fuel flow and combustion-generated OH work for a marker of \ldunburned\rd and \ldburnt\rd zones, respectively. Since acetone and OH does not coexist when the proper combustion takes place, the signal \ldvalley\rd (dark zone) between acetone and OH fluorescence can be detected, which corresponds to flame zone; representative of the combustion status. System required for current imaging technique is one-laser and one-detector combination with \ldturned\rd band-pass filter. Transmittance characteristics of the filter and acetone-seeding rate are key issues to attain clear imaging, and we found that there is proper combination of them for that purpose. Imaging demonstration for the turbulent premixed flames shows the usefulness and applicability of this scheme on complex flame diagnostics: unique flame broken flame structure (\ldunburned\rd or \ldburnt\rd islands exist separately) are clearly obtained by this approach.  相似文献   

4.
To avoid the complexities associated with the droplet/vapor transport and nonuniform evaporation processes, a fundamental investigation of liquid fuel combustion in idealized configurations is very useful. An experimental–computational investigation of prevaporized n-heptane nonpremixed and partially premixed flames established in a counterflow burner is described. There is a general agreement between various facets of our nonpremixed flame measurements and the literature data. The partially premixed flames are characterized by a double flame structure. This becomes more distinct as the strain rate decreases and partial premixing increases, which also increases the separation distance between the two reaction zones. The peak partially premixed flame temperature increases with increasing premixing of the fuel stream. The peak CO2 and H2O concentrations are relatively insensitive to partial premixing. The CO and H2 peak concentrations on the premixed side increase as the fuel-side equivalence ratio decreases. These species are transported to the nonpremixed reaction zone where they oxidize. The C2 species have peaks in the premixed reaction zone. The concentrations of olefins are ten times larger than those of the corresponding paraffins. The oxidizer is present in partially premixed flames throughout the combustion system and there are no regions characterized by simultaneous high temperature and high fuel concentration. As a result, pyrolysis reactions leading to soot formation are greatly diminished.  相似文献   

5.
A tribrachial (or triple) flame is one kind of edge flame that can be encountered in nonpremixed mixing layers, consisting of a lean and a rich premixed flame wing together with a trailing diffusion flame all extending from a single point. The flame could play an important role on the characteristics of various flame behaviors including lifted flames in jets, flame propagation in two-dimensional mixing layers, and autoignition fronts. The structure of tribrachial flame suggests that the edge is located along the stoichiometric contour in a mixing layer due to the coexistence of all three different types of flames. Since the edge has a premixed nature, it has unique propagation characteristics. In this review, the propagation speed of tribrachial flames will be discussed for flames propagating in mixing layers, including the effects of concentration gradient, velocity gradient, and burnt gas expansion. Based on the tribrachial edge structure observed experimentally in laminar lifted flames in jets, the flame stabilization characteristics including liftoff height, reattachment, and blowout behaviors and their buoyancy-induced instability will be explained. Various effects on liftoff heights in both free and coflow jets including jet velocity, the Schmidt number of fuel, nozzle diameter, partial premixing of air to fuel, and inert dilution to fuel are discussed. Implications of edge flames in the modeling of turbulent nonpremixed flames and the stabilization of turbulent lifted flames in jets are covered.  相似文献   

6.
显示OH浓度分布图像的平面激光诱导荧光技术   总被引:3,自引:0,他引:3  
用平面激光诱导荧光 (PLIF)技术测量平面火焰炉、狭缝火焰炉的单脉冲激光诱导OH荧光。由平面荧光图可得到氢氧基相对浓度分布和它的宽度。对于扩散火焰 ,高温区在OH带内侧 ;而对于预混火焰 ,二者基本一致。湍流火焰的PLIF图则清晰地显示出火焰面的不规则性。氢氧基的PLIF图像是研究火焰结构和流场的有力工具。  相似文献   

7.
8.
Flame stabilization during non-premixed combustion in curved ducts with a diameter of the order of magnitude of the premixed flame thickness of the reactants was investigated experimentally, since it has been established that this is a configuration with potential advantages in the context of “micro”-combustion. It was shown that, in such “mesoscale” tubes, a stable flame oscillation including extinction/re-ignition phenomena can be established for steady boundary conditions. These oscillations lead, under appropriate conditions, to sound emission in the 50–350 Hz range. This was a mode of stabilization in addition to the “classical” steady flamelet, stabilized through thermal losses to the duct walls at higher values of the Reynolds number. Curvature of the duct was shown to have minimal effect on reactant mixing, which was diffusion-controlled, but significantly affected flame thickness and stabilization. To probe the fuel-oxidizer mixing in the U-shaped, optically accessible tubes, laser induced fluorescence of acetone fuel dopant was used, and the flame structure was studied using OH PLIF. The various stabilization regimes are discussed in terms of the Reynolds and Dean numbers of the tube flow.  相似文献   

9.
Planar laser-fluorescence imaging of combustion gases   总被引:7,自引:0,他引:7  
An overview is provided of the planar laser-induced fluorescence (PLIF) method, which currently allows simultaneous combustion measurements at more than 105 flowfield points. Important advantages of the method include its relatively high signal strength, ease of interpretation, and applicability for determining several flowfield variables (including concentration, temperature, velocity, pressure and density). Example results are shown for a turbulent non-premixed flame, a spray flame, a rod-stabilized premixed flame, and a diffusion flame from a fuel jet in cross-flow.  相似文献   

10.
To quantitatively understand the uncertainty of intrusive species sampling measurements using a microprobe, velocity and speciation profiles of acetone counterflow diffusion flames have been experimentally investigated with cross validations using non-intrusive particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements. It is shown that the separation distance between the fuel and oxidizer nozzles needs to be sufficiently large to achieve uniform radial velocity profiles at the nozzle exit and accurate measurements of fuel concentration distributions in flames. The impacts of the diffusion flame location relative to the stagnation plane and the diffusion flame thickness on quantitative species sampling are investigated by varying the fuel to oxygen ratio as well as nitrogen and helium as fuel diluents. The results show that the diffusion flame needs to be located on the fuel side far from the stagnation plane in order to obtain reliable speciation measurements of fuel oxidation-related species. For helium dilution in the fuel side, a significant deviation from the model prediction is found due to the excessively fast diffusion velocity of helium. The impact of the intrusive probe on the flow field and the structure of the counterflow diffusion flame are identified by acetone and OH LIF measurements. The uncertainty in the speciation measurement associated with flow perturbations by the probe is quantified and found to be comparable to the outer diameter of the probe, ±0.3 mm. A simple Reynolds number analysis shows that the flow near the probe is just on the outskirts of the Stokes regime. Finally, the structure of the acetone diffusion flame is measured quantitatively with species measurements of ethane, ethylene, and acetylene. The comparison between predictions and measurements indicate that the current C2 kinetic mechanism needs to be improved for quantitative prediction of the acetone flame structures.  相似文献   

11.
The oscillating lifted flame in a laminar nonpremixed nitrogen-diluted fuel jet is known to be a result of buoyancy, though the detailed physical mechanism of the initiation has not yet been properly addressed. We designed a systematic experiment to test the hypothesis that the oscillation is driven by competition between the positive buoyancy of flame and the negative buoyancy of a fuel stream heavier than the ambient air. The positive buoyancy was examined with various flame temperatures by changing fuel mole fraction, and the negative buoyancy was investigated with various fuel densities. The density of the coflow was also varied within a certain range by adding either helium or carbon dioxide to air, to study how it affected the positive and negative buoyancies at the same time. As a result, we found that the range of oscillation was well-correlated with the positive and the negative buoyancies; the former stabilized the oscillation while the latter triggered instability and became a source of the oscillation. Further measurements of the flow fields and OH radicals evidenced the important role of the negative buoyancy on the oscillation, detailing a periodic variation in the unburned flow velocity that affected the displacement of the flame.  相似文献   

12.
Enhancement of flame speed in vortex ring combustion has been investigated experimentally. The flame speed and the maximum tangential velocity for each vortex ring were simultaneously measured with a PIV system and a high speed camera. To vary the extent of the enhancement, methane/hydrogen mixtures were used. Furthermore, rich mixtures were used as a source of vortex ring so that the situation of the experiment and the results could be applied more directly to practical use. Results have confirmed that enhancement of flame speed does occur in vortex ring combustion of rich methane/hydrogen mixtures in air. The extent of the enhancement becomes larger as the hydrogen content is increased. The flame speed reaches about twice as high as the maximum tangential velocity for pure hydrogen. Based on momentum conservation across the flame, a simple equation on the ratio of the flame speed to the maximum tangential velocity has been obtained, which has shown that the flame speed enhancement can be explained successfully by considering the spherically expanding type premixed combustion behind the flame. The pressure rise of a spherically expanding type premixed flame can explain the flame speed enhancement observed in the present rich methane/hydrogen vortex ring combustion.  相似文献   

13.
This study investigates the characteristics of oscillating lifted flames in laminar coflow-jets experimentally and numerically by varying both fuel density (by varying propane and n-butane mixtures) and coflow density (by diluting air with N2/He mixtures). Two different lifted flame oscillation behaviors are observed depending on these parameters: oscillating tribrachial lifted flame (OTLF) and oscillating mode-change lifted flame (OMLF), where a rapid increase in flame radius is observed. The regimes of the two flames are identified from experiments, which shows that OMLF occurs only when the effect of the negative buoyancy on the flow field by the fuel heavier than air becomes significant at low fuel jet velocity. OMLFs are also identified to distinguish OTLF regime from flame extinction, which implies that an OMLF can be extinguished when the positive buoyancy becomes weak, losing its stabilizing effect, or when the negative buoyancy becomes strong, further enhancing its destabilizing effect. Transient numerical simulations of both OTLF and OMLF reveal that the OMLF occurs by a strong toroidal vortex and a subsequent counterflow-like structure induced by relatively-strong negative buoyancy. Such a drastic flow redirection significantly changes the fuel concentration gradient such that the OMLF changes its mode from a tribrachial flame mode (decreasing edge speed with fuel concentration gradient) to the premixed flame-like transition mode when the fuel concentration gradient becomes very small (increasing edge speed with fuel concentration gradient). Again, a tribrachial flame mode is recovered during a rising period of flame edge and repeats an oscillation cycle.  相似文献   

14.
Instantaneous and simultaneous measurements of two-dimensional temperature and OH-LIF profiles by combining Rayleigh scattering with laser induced fluorescence (LIF) were demonstrated in a nitrogen-diluted hydrogen (H2 30% + N2 70%) laminar normal diffusion flame interacting with a large-scale vortex by oscillating central fuel flow or in an inverse diffusion flame by oscillating central airflow. The dynamic behavior of the diffusion flame extinction and reignition during the flame–vortex interaction processes was investigated. The results obtained are described as follows. (1) The width of the reaction zone decreases remarkably, and a decrease in flame temperature and OH-LIF is seen with increasing central airflow in an inverse diffusion flame. OH-LIF increases, and temperature does not change with increasing central fuel flow in a normal diffusion flame. The computations predict the experimental results well, and it is revealed that flame temperature characteristics result from the preferential diffusion of heat and species, which induces excess enthalpy or on enthalpy deficit, and an increase or decrease in H2 mole fraction in the flame. (2) When a large velocity fluctuation is given to the central flow, the temperature and the OH-LIF at the reaction zone become thin at the convex and circumferential part of the vortex where a high temperature layer exists, and the temperature at the reaction zone is lowered in the inverse flame and the normal flame. (3) The width and temperature of the reaction zone interacting with the vortex recover quickly to that of the laminar steady flame after the vortex passing in the normal flame, but the recovery to that of the steady flame after the vortex passing is delayed in the inverse flame. (4) When a remarkably large velocity fluctuation is given to the central airflow in the inverse flame, thinning of temperature and reaction zone starts at the convex and circumferential part of the vortex, resulting in a and flame extinction completely occurs at the tail part of the vortex and makes the pair of edge flames. The outside edge flame reignites and connects with the upstream reaction zone. The inside edge flame finally extinguishes as the supply of fuel is interrupted by the outside edge flame.  相似文献   

15.
Partially premixed combustion (PPC) and reactivity controlled compression ignition (RCCI) are two new combustion modes in compression-ignition (CI) engines. However, the detailed in-cylinder ignition and flame development process in these two CI modes were not clearly understood. In the present study, firstly, the fuel stratification, ignition and flame development in PPC and RCCI were comparatively studied on a light-duty optical engine using multiple optical diagnostic techniques. The overall fuel reactivity (PRF number) and concentration (fuel-air equivalence ratio) were kept at 70 and 0.77 for both modes, respectively. Iso-octane and n-heptane were separately used in the port-injection (PI) and direct-injection (DI) for RCCI, while PRF70 fuel was introduced through direct-injection (DI) for PPC. The DI timing for both modes was fixed at –25°CA ATDC. Secondly, the combustion characteristics of PPC and RCCI with more premixed charge were explored by increasing the PI mass fraction for RCCI and using the split DI strategy for PPC. In the first part, results show that RCCI has shorter ignition delay than PPC due to the fuel reactivity stratification. The natural flame luminosity, formaldehyde and OH PLIF images prove that the flame front propagation in the early stage of PPC can be seen, while there is no distinct flame front propagation in RCCI. In the second part, the higher premixed ratio results in more auto-ignition sites and faster combustion rate for PPC. However, the higher premixed ratio reduces the combustion rate in RCCI mode and the flame front propagation can be clearly seen, the flame speed of which is similar to that in spark ignition engines but lower than that in PPC. It can be concluded that the ratio of flame front propagation and auto-ignition in RCCI and PPC can be modulated by the control over the fuel stratification degree through different fuel-injection strategies.  相似文献   

16.
Flame stabilisation in (highly) preheated mixture is common in several industrial applications. When the reactants are injected separately in the device (usually at high-speed), the flame is lifted so that the fuel and oxidant first mix to give an ignitable mixture. If the temperature of the mixture is adequate, it auto-ignites stabilizing the flame. Here we focus on an academic lifted jet flame and Large Eddy Simulation (LES) is used to capture the flame and auto-ignition dynamics. Comparisons with experimental data show that LES simulates accurately high OH fluctuation levels at the stabilisation location. The vortex dynamics linked to these fluctuations is analyzed and it is found that small scale coherent structures play a vital role in the auto-ignition process. These structures are axial vorticity tubes (braids) and are located relatively far (in the radial direction) from the shear-layer. As a consequence, the lift-off height varies dramatically in time leading to OH fluctuations of the order of the mean OH concentration. This scenario is monitored in the compositional space highlighting the simultaneous evolution of OH, HO 2 and temperature. Further, different strategies for open-loop control of the flame lift-off height are tested. In order to anchor the flame at different positions downstream of the nozzle, the vortex dynamics in the shear-layer was modified. Promoting successively vortex ring and braids, the auto-ignition region was moved significantly. In particular, modified nozzle geometries impacted the formation of braids and ensured a good premixing very close to the nozzle. As a consequence, it was possible to reduce significantly the lift-off height and stabilise the flame few diameters downstream of the nozzle.  相似文献   

17.
Understanding the distinguishing physical properties of multi-element lean-premixed high hydrogen content flames is expected to be integral to the development of carbon-neutral, and ultimately carbon-free, gas turbine combustion systems. Despite their fundamental importance, the thermoacoustic and emission-related characteristics of such small-scale flame ensembles are not thoroughly understood, particularly for the full range of 0 to 100% hydrogen content blended with methane fuel. Here we investigate the structure and collective behavior of a multi-element lean-premixed hydrogen/methane/air flame ensemble using measurements of nitrogen oxides emissions and self-excited instability, combined with OH* and OH PLIF flame visualizations. Our results indicate that the system's responses can be classified into several distinctive stages according to their static and dynamic stability, including flame blowoff and thermoacoustically stable regions under relatively low hydrogen concentration conditions, low-frequency self-excited instabilities in intermediate hydrogen concentration, and triggering of intense pressure perturbations at about 1.7 kHz under high- or pure hydrogen combustion conditions. While the low-frequency combustion dynamics are dominated by axisymmetric translational movements of parallel flame fronts, the higher frequency response originates from significant lateral modulations accompanied by small-scale vortical rollup and flame surface annihilation due to front merging and pinch-off. Longitudinal-to-transverse dynamic transition is observed to play a mechanistic role in kinematically accommodating higher-frequency heat release rate fluctuations, and this newly identified mechanism suggests the possibility of high-frequency transverse modes, if such lateral motions are strong enough to induce inter-element flame interactions. In contrast to the substantial differences in thermoacoustic properties for different fuel compositions, the total nitrogen oxides emissions are found to depend primarily on adiabatic flame temperature; the influence of fuel composition is limited to approximately 20% under the inlet conditions considered.  相似文献   

18.
The dynamics of soot formation in turbulent ethylene-air nonpremixed counterflow flames is studied using direct numerical simulation (DNS) with a semi-empirical soot model and the discrete ordinate method (DOM) as a radiation solver. Transient characteristics of soot behavior are studies by a model problem of flame interaction with turbulence inflow at various intensities. The interaction between soot and turbulence reveals that the soot volume fraction depends on the combined effects of the local conditions of flow, temperature, and fuel concentration, while the soot number density depends predominantly on the high temperature regions. Depending on the relative strength between mixing and reaction, the effects of turbulence on the soot formation lead to three distinct paths in deviating the data points away from the laminar flame conditions. It is found that turbulence has twofold effects of increasing the overall soot yield by generating additional flame volume and of reducing soot by dissipating soot pockets out of high-temperature regions. The relative importance between the two effects depends on the relative length scales of turbulence and flame, suggesting that a nonmonotonic response of soot yield to turbulence level may be expected in turbulent combustion.  相似文献   

19.
 介绍了平面激光诱导荧光的原理及实验装置,利用可调谐OPO激光器,在甲烷 空气火焰及一些高能燃剂燃烧火焰中测得了NO分子在不同压力、不同燃烧时刻的系列荧光谱线及二维浓度分布,并给出实验结果分析。  相似文献   

20.
A well-defined plasma assisted combustion system with novel in situ discharge in a counterflow diffusion flame was developed to study the direct coupling kinetic effect of non-equilibrium plasma on flame ignition and extinction. A uniform discharge was generated between the burner nozzles by placing porous metal electrodes at the nozzle exits. The ignition and extinction characteristics of CH4/O2/He diffusion flames were investigated by measuring excited OH1 and OH PLIF, at constant strain rates and O2 mole fraction on the oxidizer side while changing the fuel mole fraction. It was found that ignition and extinction occurred with an abrupt change of OH1 emission intensity at lower O2 mole fraction, indicating the existence of the conventional ignition-extinction S-curve. However, at a higher O2 mole fraction, it was found that the in situ discharge could significantly modify the characteristics of ignition and extinction and create a new monotonic and fully stretched ignition S-curve. The transition from the conventional S-curves to a new stretched ignition curve indicated clearly that the active species generated by the plasma could change the chemical kinetic pathways of fuel oxidation at low temperature, thus resulting in the transition of flame stabilization mechanism from extinction-controlled to ignition-controlled regimes. The temperature and OH radical distributions were measured experimentally by the Rayleigh scattering technique and PLIF technique, respectively, and were compared with modeling. The results showed that the local maximum temperature in the reaction zone, where the ignition occurred, could be as low as 900 K. The chemical kinetic model for the plasma–flame interaction has been developed based on the assumption of constant electric field strength in the bulk plasma region. The reaction pathways analysis further revealed that atomic oxygen generated by the discharge was critical to controlling the radical production and promoting the chain branching effect in the reaction zone for low temperature ignition enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号