首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 562 毫秒
1.
本文采用基于密度泛函理论(DFT)的第一性原理方法对ZnO晶体在c轴取向压力作用下的晶体结构、电子结构的变化进行了研究. 结果表明,当压力在0到6 GPa区间时,晶格参数呈线性变化,带隙随压力增大而增大,显示弹性应变特征;当压力从6 GPa增大到10 GPa的过程中,晶体结构有了较大变化,出现了介于常压下纤锌矿结构和等静压高压下NaCl结构之间的类石墨结构(Graphitelike structure). 伴随着这一结构相变,ZnO的晶格参数,能隙和态密度等电子结构出现了较大跃变.  相似文献   

2.
基于密度泛函理论从头计算法,研究了500GPa外压力条件下纤锌矿结构ZnO氧化物的晶格结构、电子结构、光学性质和导电性能。计算分析结果表明,在500GPa外压力下,ZnO氧化物的晶格对称性保持不变,晶格参数减小,Zn—O键长和O—Zn—O键角均减小,但不同方向上材料的可压缩性不同;ZnO氧化物的带隙类型仍为直接带隙,其宽度增加到1.65eV;费米能级附近的能级数量减少,态密度降低,电子在不同能量区域的局域化趋势明显;ZnO氧化物的光吸收向高能量范围扩展,低能量光学吸收降低,高能量光吸收增强。分析结果表明,500GPa的外压力下,ZnO氧化物费米能级附近的载流子浓度、有效质量和迁移速率均降低,其电性能降低。  相似文献   

3.
基于密度泛函理论从头计算法,研究了500GPa外压力条件下纤锌矿结构ZnO氧化物的晶格结构、电子结构、光学性质和导电性能。计算分析结果表明,在500GPa外压力下,ZnO氧化物的晶格对称性保持不变,晶格参数减小,Zn—O键长和O—Zn—O键角均减小,但不同方向上材料的可压缩性不同;ZnO氧化物的带隙类型仍为直接带隙,其宽度增加到1.65eV;费米能级附近的能级数量减少,态密度降低,电子在不同能量区域的局域化趋势明显;ZnO氧化物的光吸收向高能量范围扩展,低能量光学吸收降低,高能量光吸收增强。分析结果表明,500GPa的外压力下,ZnO氧化物费米能级附近的载流子浓度、有效质量和迁移速率均降低,其电性能降低。  相似文献   

4.
研究高压条件下均苯四甲酸(C10H6O8)材料的结构和性质对探索有机半导体材料的应用有积极意义.基于密度泛函理论的第一性原理赝势平面波方法,开展了0-300 GPa压强下C10H6O8晶体的结构、电子和光学性质的研究.晶格常数在压强20 GPa和150 GPa下出现了明显跳变,且原子之间随着压强变化反复地出现成键/断键现象,表明压强可诱导晶体结构变化.电子结构的性质表明,0 GPa的C10H6O8晶体是带隙为3.1 eV的直接带隙半导体,而压强增加到150 GPa时,带隙突变为0 eV,表明了晶体由半导体转变为导体.当压强为160 GPa时,晶体又变成了能隙约为1eV的间接带隙半导体,这可能是费米能级附近仅受O-2p轨道电子影响所导致.通过对C10H6O8晶体介电函数的分析,再次验证了晶体在150 GPa时发生了结构相变.同时...  相似文献   

5.
宽禁带直接带隙半导体材料氧化锌(ZnO),具有优异的光电性能、机械性能和化学特性。ZnO材料的结构对其性能影响较大,元素掺杂可改变ZnO晶体结构和带隙宽度,是提升ZnO材料性能的有效手段,当前常用Ag掺杂ZnO即为提高光催化反应效率。高压独立于温度、成分,是调控材料结构组织性能的重要手段,是产生新材料、发现新调控原理的重要因素。该研究通过对比纯ZnO晶体和Ag掺杂ZnO晶体的高压相变行为,揭示了元素掺杂对ZnO纳米晶体材料结构性能的影响。研究首先采用水热法辅助制备纯ZnO纳米微球和Ag掺杂ZnO纳米微球(1∶150Ag/ZnO),表征结果显示水热法合成的纯ZnO和1∶150Ag/ZnO均为六角纤锌矿晶体结构,形貌均为几十纳米尺寸小颗粒堆积形成的微球,ZnO晶格常数随着Ag离子掺杂而变大,Ag掺杂导致ZnO晶格膨胀。随后应用金刚石压腔结合原位拉曼光谱技术测定了纯ZnO和Ag掺杂ZnO的高压结构相变行为。相比于纯ZnO拉曼峰,Ag掺杂ZnO的E2(high)振动模式439 cm-1拉曼峰峰宽变窄,并呈现向低频方向移动的趋势,与无定形ZnO谱峰相近,表明Ag+取代Zn2+影响了Zn-O键,同时也影响了ZnO晶格结构的长程有序性。随体系压力增大,表征六角纤锌矿结构ZnO的拉曼特征峰439 cm-1出现瞬间弱化和宽化。压力增大至9.0 GPa时,纤锌矿结构ZnO拉曼特征峰439 cm-1消失,585 cm-1处出现新峰,ZnO晶体发生由六角纤锌矿向岩盐矿的结构转变。压力继续增大至11.5 GPa,新的拉曼峰显著增强,峰形变窄,同时向高波数方向移动,相变完成,岩盐矿结构ZnO性能稳定。1∶150 Ag/ZnO从六角纤锌矿结构到立方岩盐结构的相变压力为7.2 GPa,低于纯ZnO。相变压力降低表明晶体结构稳定性下降,可能的原因在于掺杂Ag导致ZnO晶格膨胀,晶体结构松弛,两相相对体积变化增加,从而导致相变势垒降低,使样品在较低压力下发生相变。纳米材料的高压研究揭示了元素掺杂对材料结构稳定性的影响,是纳米材料调控原理的潜在研究手段。  相似文献   

6.
基于密度泛函理论体系下的广义梯度近似(GGA)方法,利用第一性原理计算了不同压强下CdS晶体闪锌矿结构,得到其晶格常数、总能量、电子态密度分布、能带结构、光反射与吸收系数等性质,通过比较能带结构的变化行为,得出CdS在116.8 GPa附近还存在等结构相变,即由直接带隙结构变为间接带隙结构.结合电子结构系统分析了压力效...  相似文献   

7.
用基于密度泛函理论的第一性原理结合广义梯度近似研究了高压下盐岩相InN的电子结构和光学性质. 计算得到的晶格常数与实验值非常吻合,并发现Γ和X的带隙随压力增加而增大,而带隙在L点却并不明显. 计算出Γ点的带隙的压力系数是44 meV/GPa. 讨论计算得到的InN的光学性质,结合能带结构和电子态密度.  相似文献   

8.
采用密度泛函理论框架下的第一性原理计算方法,利用广义梯度近似和Perdew-Burke-Ernzerdorf泛函,计算了不同Sn掺杂浓度下SZO(Sn∶ZnO)体系的电子结构与光学性质.研究了Sn掺杂浓度对SZO(Sn∶ZnO)的晶体结构、能带结构、电子态密度及光学性质的影响,并结合计算的能带结构和差分电荷密度对比分析了掺杂位置对计算结果的影响.研究结果表明,随着Sn掺杂浓度的增加,晶格常数c与a的比值变化很小,掺杂后晶胞没有发生畸变.掺杂体系的能量逐渐增大,稳定性减弱,且随着掺杂浓度的增加,带隙呈现先减小后增大的变化规律.掺杂后的SZO(Sn∶ZnO)成为间接带隙半导体,在导带底部附近出现了大量Sn原子贡献的导电载流子,明显提高了掺杂体系的电导率,并在费米能级附近与价带顶部之间出现一条由Sn原子贡献的杂质能级,能带结构呈现半填满状态,价带部分的电子态密度峰值向低能方向移动约1.5eV.同层掺杂的电子得失程度较大,带隙比相邻层掺杂和隔层掺杂时小.掺杂后吸收带边发生红移,材料对紫外光的吸收能力明显增强,介电常数虚部增大,主要跃迁峰向高能方向移动.计算结果表明SZO(Sn∶ZnO)是一种优良的透明导电薄膜材料.  相似文献   

9.
基于密度泛函理论的第一性原理计算方法,本文研究了高压对β-InSe弹性常数、机械性能和电子结构的影响.在0~20 GPa范围内,随着压力的增大,β-InSe的晶格常数、晶胞体积逐渐减小,结构参数a/a_0、c/c_0、V/V_0单调减小.在0~12 GPa范围内,弹性模量G、E、B和泊松比v随着压力增大而增大,在16 GPa时大幅减小,G、E、B分别减小了34.9%、53.3%、82.9%.随着压力增大,Se-In和In-In原子之间的电荷密度增大,Se-In原子之间的共价键增强,层间距减小.而且,β-InSe在20 GPa时带隙消失,发生了半导体向半金属的相变.  相似文献   

10.
基于密度泛函理论的第一性原理计算方法,本文研究了高压对β-InSe弹性常数、机械性能和电子结构的影响.在0~20 GPa范围内,随着压力的增大,β-InSe的晶格常数、晶胞体积逐渐减小,结构参数a/a_0、c/c_0、V/V_0单调减小.在0~12 GPa范围内,弹性模量G、E、B和泊松比v随着压力增大而增大,在16 GPa时大幅减小,G、E、B分别减小了34.9%、53.3%、82.9%.随着压力增大,Se-In和In-In原子之间的电荷密度增大,Se-In原子之间的共价键增强,层间距减小.而且,β-InSe在20 GPa时带隙消失,发生了半导体向半金属的相变.  相似文献   

11.
刘博  王煊军  卜晓宇 《物理学报》2016,65(12):126102-126102
研究高压下NH_4ClO_4的结构和性质对于NH_4ClO_4在固体推进剂和炸药的安全应用具有重要意义.采用基于色散校正密度泛函理论的第一性原理方法,研究了0—15 GPa静水压力下NH_4ClO_4的晶体结构、分子结构、电子性质和弹性性质,计算结果与实验值具有较好的一致性.在压强为1,4和9 GPa时,NH_4ClO_4的晶体参数、键长和分子构型等均出现不连续变化,说明了在压强作用下结构发生变化.随着压强增加,氢键增多且作用增强,由分子内氢键向分子内和分子间的氢键转变;导带态密度峰值增加,电子局域性增强,晶体内N-H和Cl-O共价键作用增强,带隙增大,不同相变区域内带隙呈线性关系.0—15 GPa条件下NH_4ClO_4的弹性常数满足力学稳定性标准,采用Voigt-Reuss-Hill方法计算了体积模量B,剪切模量G和杨氏模量E,根据Cauchy压力和B/G值,说明NH_4ClO_4属于韧性材料,随着压强增加韧性增强.  相似文献   

12.
MgS晶体结构性质的密度泛函研究   总被引:3,自引:0,他引:3       下载免费PDF全文
陈中钧  肖海燕  祖小涛 《物理学报》2005,54(11):5301-5307
采用基于密度泛函理论(DFT)基础上的第一性原理赝势平面波方法对MgS晶体四种构型(B1,B2,B3,B4)的体相性质进行了系统研究.计算结果表明,B1构型的晶体是间接带隙型半导体,而B2,B3和B4构型的晶体则是直接带隙型材料,其中B2构型的带隙宽度最窄,其值为0.42eV.在压力不超过200.3GPa时,B1构型的MgS 晶胞是最稳定的,当压力大于该值时,会发生B1构型到B2构型的转化. 关键词: MgS 第一性原理赝势平面波方法 电子结构 转化压力  相似文献   

13.
Hf-C体系的高压结构预测及电子性质第一性原理模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
彭军辉  曾庆丰  谢聪伟  朱开金  谭俊华 《物理学报》2015,64(23):236102-236102
本论文中, 采用晶体结构预测软件USPEX结合第一性原理方法全面地搜索了Hf-C体系在高压下的晶体结构, 预测得到了两种新的化合物及HfC在高压下的相变路径. 压力低于100 GPa 时, 除了常压下的结构HfC, Hf3C2, Hf6C5, 并没有得到新的热力学稳定结构. 在200 GPa时, 预测得到了一种新化合物——Hf2C, 空间群为I4/m; 且HfC的结构发生了相变, 空间群由Fm3m变为C2/m. 在300 GPa时, 预测得到了另一种新化合物——HfC2, 空间群为Immm. 而在400 GPa时, HfC的结构再次发生相变, 空间群为Pnma. 通过能量计算, 得到了Hf-C体系的组分-压力相图: 在压力分别低于15.5 GPa和37.7 GPa时, Hf3C2和Hf6C5是稳定的; 压力分别大于102.5 GPa和215.5 GPa时, Hf2C和HfC2变成稳定化合物; HfC的相变路径为Fm3m→C2/m→Pnma, 相变压力分别为185.5 GPa 和322 GPa. 经结构优化后, 得到了这四种高压新结构的晶体学数据, 如晶格常数、原子位置等, 并分析了其结构特点. 对于Hf-C 体系中的高压热力学稳定结构, 分别计算了其弹性性质和声子谱曲线, 证明是力学稳定和晶格动力学稳定的. 采用第一性原理软件VASP模拟高压结构的能带结构、态密度、电子局域函数和Bader 电荷分析, 发现HfC(C2/m, Pnma结构), Hf2C 和HfC2 中Hf-C 键具有强共价性、弱金属性和离子性, 且C-C 间存在共价作用.  相似文献   

14.
We employ state-of-the-art ab initio density functional theory techniques to investigatethe structural, dynamical, mechanical stability and electronic properties of the ternaryAgInS2 compoundsunder pressure. Using cohesive energy and enthalpy, we found that from the six potentialphases explored, the chalcopyrite and the orthorhombic structures were very competitive aszero pressure phases. A pressure-induced phase transition occurs around 1.78 GPa from the low pressure chalcopyritephase to a rhombohedral RH-AgInS2 phase. The pressure phase transition around 1.78 GPa isaccompanied by notable changes in the volume and bulk modulus. The calculations of thephonon dispersions and elastic constants at different pressures showed that thechalcopyrite and the orthorhombic structures remained stable at all the selected pressure(0, 1.78 and 2.5 GPa), where detailed calculations were performed, while the rhombohedralstructure is only stable from the transition pressure 1.78 GPa. Pressure effect on thebandgap is minimal due to the small range of pressure considered in this study. Themeta-GGA MBJ functional predicts bandgaps which are in good agreement with availableexperimental values.  相似文献   

15.
In this paper we demonstrate that two independent methods of calculations (DFT based ab initio and semi-empirical crystal field theory) can be used to form a complementary picture of the optical and electronic properties of the doped host and impurity ion. The crystals considered in the present paper are: (i) YAlO3:Ce3+ and (ii) two dominant phases of TiO2—rutile and anatase. As an example, detailed calculations of the band structure and crystal field energy level scheme of YAlO3:Ce3+ are reported. From the analysis of the band structure and density of states, the character of the YAlO3 energetic bands and positions of the Ce impurity energy levels were established. It was also shown how the ab initio methods can be used for calculations of the structural properties of solids under elevated pressure. Taking the two dominant phases of TiO2 as an example, it was demonstrated how the elastic properties can be extracted from the calculated unit cell’s volume at different pressures. Particular attention was paid to the microscopic effects of crystal field, which were evidenced by the pressure-induced changes of the structure and shape of distribution of the Ti 3d electrons density of states. It was demonstrated how the difference in crystal structure of the anatase and rutile phases leads to remarkable difference in microscopic crystal field effects, which was explained by different Ti-O distances in both phases. In addition, the pressure dependence of the band gaps for anatase and rutile was investigated. It was shown that the hydrostatic pressure leads to the band gap narrowing in anatase and band gap widening in rutile, with pressure coefficients +0.00681 eV/GPa for rutile and −0.0088 eV/GPa for anatase.  相似文献   

16.
Qun Chen 《中国物理 B》2022,31(5):56201-056201
Pressure is an effective and clean way to modify the electronic structures of materials, cause structural phase transitions and even induce the emergence of superconductivity. Here, we predicted several new phases of the ZrXY family at high pressures using the crystal structures search method together with first-principle calculations. In particular, the ZrGeS compound undergoes an isosymmetric phase transition from P4/nmm-I to P4/nmm-II at approximately 82 GPa. Electronic band structures show that all the high-pressure phases are metallic. Among these new structures, P4/nmm-II ZrGeS and P4/mmm ZrGeSe can be quenched to ambient pressure with superconducting critical temperatures of approximately 8.1 K and 8.0 K, respectively. Our study provides a way to tune the structure, electronic properties, and superconducting behavior of topological materials through pressure.  相似文献   

17.
Mn doping effect on a wurtzite-to-cubic phase transformation in ZnO has been investigated by in situ high pressure X-ray powder diffraction using synchrotron radiation. Unit cell expansion is clearly observed in Mn-doped ZnO samples. Mn ions sit at Zn site in the wurtzite structure. The onset transition pressure for the wurtzite-to-cubic phase transformation decreases from about 9.5 GPa for pure ZnO to 6 GPa for sintered 2at.% Mn-doped ZnO while the compressibility and volume collapse at transition pressures are not sensitive to the Mn doping in the wurtzite phase. The doping of Mn ions in ZnO increases the onset transition pressure for the cubic-to-wurtzite phase transformation. The results could be explained by a reduction of phase transformation barriers for both transition paths by the Mn doping. The observation of reduction of the wurtzite-to-cubic phase transformation pressure might point out a new direction to synthesize cubic wurtzite phase of ZnO by doping transition element(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号