首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
In this study, it is aimed to prepare polyvinyl borate (PVB)/titanium dioxide (TiO2) composites through the condensation reaction of polyvinyl alcohol and boric acid in the presence of TiO2 nanoparticles. The scope of this study contains the photocatalytic activity of the prepared composites with varying TiO2 content from 0 to 35 wt.% for the degradation of methylene blue in aqueous medium under UV light irradiation. The structure and morphological properties of the prepared composites were studied with FTIR, TGA, EDX, SEM and TEM analyses. The photocatalytic activity of the prepared samples was analyzed by UV-Vis spectrophotometer measurements. In parallel with TiO2 content up to 30 wt.%, the photocatalytic activity of PVB/TiO2 composites was enhanced and the composites exhibited higher discoloration rate of the model dye, methylene blue.  相似文献   

2.
TiO2 nanoparticles incorporated with CuInS2 clusters were prepared in a solvothermal process and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersion X-ray analysis (EDX). Compared with pure TiO2 nanoparticles, the TiO2 nanoparticles incorporated with CuInS2 clusters display higher photocatalytic activity with 99.9% of degradation ratio of 4-nitrophenol after 2 h irradiation. In order to investigate the effect of the CuInS2 clusters on the photocatalytic activity of TiO2 nanoparticles, diffuse reflectance UV–Vis spectra (DRS), photoluminescence (PL) spectra, and photocurrent action spectra were measured. The results indicate that the enhanced photocatalytic activity is probably due to the interface between TiO2 and CuInS2 as a trap of the photogenerated electrons to decrease the recombination of electrons and holes.  相似文献   

3.
The objective of this research is to compare the photocatalytic activity of nanoparticles of N-doped and S-doped titanium dioxide in water splitting by using sunlight radiation for hydrogen production. The sol–gel method was used for the preparation of nanoparticles of doped TiO2 and the weight percent of doping element was 2, 4, 6 and 8. The prepared nanoparticles were identified by absorbance spectra of UV–Vis and FT-IR, TGA, XRD patterns, FE-SEM images and EDX spectra. The nanoparticles of S–\({\text{TiO}}_{2}\) indicated the lower band gap and lesser particle size versus N–\({\text{TiO}}_{2}\) nanoparticles. Nevertheless, the nanoparticles of N–\({\text{TiO}}_{2}\) showed the higher photocatalytic activity in hydrogen production process. The activity of doped samples with sulfur (S–\({\text{TiO}}_{2}\)) was reduced by the presence of sulfate anions, and the absorption of radiation in the samples surface was due to a decrease in the number of electron–hole pair in photocatalyst. The photocatalytic activity of N–\({\text{TiO}}_{2}\) was also increased with the increasing in weight fraction of N atoms, and the highest hydrogen production was obtained in 6 wt% of nitrogen.  相似文献   

4.
The thin films of TiO2 doped by Sn or Nb were prepared by sol–gel method under process control. The effects of Sn and Nb doping on the structural, optical and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD) high resolution transmission electron microscopy and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methylene blue under UV and Visible radiation. The results show that the photocatalytic activity of the Sn-doped TiO2 thin film have a larger degradation efficiency than Nb-doped TiO2 under visible light, but under UV light photocatalytic activity of the Nb-doped TiO2 thin film is better.  相似文献   

5.
玻璃微珠/Ag/TiO2可见光催化剂的制备与表征   总被引:1,自引:0,他引:1  
通过离子交换法将Ag纳米颗粒负载于玻璃微珠的表面及浅表层,并以钛酸四丁酯的乙醇溶液为前驱体,将TiO2负载于包含银的玻璃微珠表面,制得一种玻璃微珠/Ag/TiO2复合光催化剂。由于纳米银的表面等离子体吸收效应,该复合光催化剂具有一定的可见光响应特性。利用XRD、SEM对样品进行表征,可发现玻璃微珠表面形成一层均匀多孔的锐钛矿TiO2,其粒径均在50 nm左右。由漫反射光谱可得出该催化剂具有较强的可见光吸收,并在降解甲基橙溶液的试验中表现出较好的可见光催化活性。  相似文献   

6.
In this article, TiO2 nanorods (aspect ratio >20) were prepared through a polyol process and doped with metal ions (Cu2+, Ni2+, Fe3+, and Cr3+). Compared with TiO2 nanoparticles, the TiO2 nanorods displayed relatively higher photocatalytic activity for the degradation of copper sulfophthalocyanine. Moreover, the photocatalytic activity was greatly enhanced when the metal ions were doped in the TiO2 nanorods.  相似文献   

7.
Although TiO2 is an efficient photocatalyst, its large band gap limits its photocatalytic activity only to the ultraviolet region. An experimentally synthesized ternary Fe/C/S‐doped TiO2 anatase showed improved visible light photocatalytic activity. However, a theoretical study of the underlying mechanism of the enhanced photocatalytic activity and the interaction of ternary Fe/C/S‐doped TiO2 has not yet been investigated. In this study, the defect formation energy, electronic structure and optical property of TiO2 doped with Fe, C, and S are investigated in detail using the density functional theory + U method. The calculated band gap (3.21 eV) of TiO2 anatase agree well with the experimental band gap (3.20 eV). The defect formation energy shows that the co‐ and ternary‐doped systems are thermodynamically favorable under oxygen‐rich condition. Compared to the undoped TiO2, the absorption edge of the mono‐, co‐, and ternary‐doped TiO2 is significantly enhanced in the visible light region. We have shown that ternary doping with C, S, and Fe induces a clean band structure without any impurity states. Moreover, the ternary Fe/C/S‐doped TiO2 exhibit an enhanced photocatalytic activity, a smaller band gap and negative formation energy compared to the mono‐ and co‐doped systems. Moreover, the band edges of Fe/C/S‐doped TiO2 align well with the redox potentials of water, which shows that the ternary Fe/C/S‐doped TiO2 is promising photocatalysts to split water into hydrogen and oxygen. These findings rationalize the available experimental results and can assist the design of TiO2‐based photocatalyst materials.  相似文献   

8.
Vanadium doped titanium dioxide (V–TiO2) photocatalyst was synthesized by the sol–gel method using ammonium vanadate as vanadium source. The prepared samples were characterized by XRD, N2 adsorption–desorption method, UV–Vis DRS, Fourier transform infrared (FTIR), scanning electron microscope–energy dispersive X-ray and photoluminescence (PL) analysis. The results show that V5+ ions were successfully incorporated into the crystal lattice of TiO2 as a consequence, not only an obvious decrease in the band gap and a red shift of the absorption threshold into the visible light region was recorded for the V modified TiO2, but, also a decrease in photogenerated electrons and holes recombination rate was observed as demonstrated by PL analysis. FTIR study indicated that in undoped TiO2 sample the acetate group favored a bidentate bridging mode of binding with titanium atoms, whereas a bidentate chelating mode of linkage was observed in V–TiO2 powders. The crystallite size of the samples calcined at 300 and 500 °C were decreased beyond the molar ratio of 200:1 (V:Ti), this may be due to dopant presence in the grain boundaries hindering the crystal growth. The photocatalytic activities for both pure and vanadium doped TiO2 powders were tested in the discoloration of a reactive dyestuff, methylene blue, under visible light. The 100:1 (V:Ti) doped photocatalyst, calcined at 300 °C showed enhanced photocatalytic activity under visible light with a rate constant (kobs) of 5.024 × 10?3 min?1 which is nearly five times higher than that of pure TiO2, as result of low band gap value, high specific surface area and a decrease in recombination rate.  相似文献   

9.
Visible light‐driven Al‐doped TiO2 with different aluminum contents (2, 5 and 10 mol%) were synthesized via a facile sol–gel method. Fourier transform infrared (FTIR), UV‐visible diffuse reflectance, energy dispersive Xray (EDX) spectroscopy as well as X‐ray diffraction (XRD), X‐ray fluorescence (XRF) and scanning electron microscopy (SEM) methods were used for the characterization of the obtained nanoparticles. The photocatalytic performance of the samples was evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. The yield of the degradation RhB was estimated to be 71%, 89%, 65% and 56%, for the bare TiO2, 2%, 5% and 10% Al‐doped TiO2, respectively. It was found that 2 mol% of Al‐doped TiO2 shows the best photocatalytic performance. In low concentration of dopant, separation of photogenerated electron–hole pairs promoted, and subsequently, the degradation efficiency increased. It was proposed that the degradation of RhB by 2 mol% Al‐doped TiO2 photocatalyst follows both N‐deethylation and chromophore cleavage mechanisms, while the N‐deethylation still predominated over cleavage of dye chromophore structure. The key role of hydroxyl radicals in RhB degradation was verified by the effects of scavengers. In addition, the photocatalyst can be reused for three runs without any significant loss of its catalytic activity.  相似文献   

10.
Layered double hydroxide (LDH)-based photocatalysts have emerged as a very promising candidate to replace TiO2, owing to their unique layered structure, tunable band gaps, low cost, ease of scale-up, and good photocatalytic activity. Bismuth-doped ZnCr-LDH was studied as photocatalyst in the photodegradation of methylene blue (MB). The structure and morphology of ZnCr-LDH and ZnCrBi-LDH were characterized using a different mode of delegated tools, e.g., FTIR, XRD, UV–Vis, FESEM–EDX, and TEM measurements. FESEM and TEM image of the synthesized LDHs showed that the synthesized LDH is smooth overlapping crystals, and they are approximately in hexagonal form. The material was found to be a good photocatalyst for degradation of methylene blue in visible light, and the results showed that the photocatalytic activity of ZnCrBi-LDH sample is higher than of ZnCr-LDH sample. According to the kinetic data, the reaction rate constant of ZnCrBi-LDH is approximately four times higher than the apparent reaction rate constant of ZnCr-LDH. The catalytic activity was retained even after four methylene blue degradation cycles, indicating that the LDH could be an important addition to the field of wastewater treatment.  相似文献   

11.
An attempt was made to prepare Mn,Fe-codoped nanostructured TiO2 photocatalyst for visible light assisted degradation of an azo dye (methylene blue) in aqueous solutions by a sol-gel process. The asprepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL) techniques. The photocatalytic activity of Mn,Fe-codoped TiO2 catalyst was evaluated by measuring degradation rates of methylene blue (MB) under visible light. The results showed that doping with the manganese and iron ions significantly enhanced the photocatalytic activity for MB degradation under visible light irradiation. This was ascribed to the fact that a small amount of manganese and iron dopants simultaneously increased MB adsorption capacity and separation efficiency of electron-hole pairs. The results of DRS showed that Mn,Fe-codoped TiO2 had significant absorption between 400 and 500 nm, which increased with the increase of manganese ion content. It is found that the stronger the PL intensity, the higher the photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions, so that the recombination of photoinduced electrons and holes could be effectively inhibited.  相似文献   

12.
氮掺杂TiO2光催化剂的制备及可见光催化性能研究   总被引:7,自引:0,他引:7  
在溶胶-凝胶法基础之上,以尿素为氮源,通过较温和的反应条件来制备氮掺杂TiO2光催化剂。以亚甲基蓝为模型化合物、日光色镝灯为光源,探索了其可见光光催化性能;并用XRD、低温氮气吸附-脱附技术、UV-Vis等表征了其结构特征;同时以对苯二甲酸为探针分子,结合化学荧光技术研究了光催化体系中·OH自由基的变化规律,进一步验证了其光催化活性规律。结果表明:氮掺杂能引起TiO2光催化剂的激发吸收光谱明显红移并具较好的可见光响应性;在不同煅烧温度和尿素/钛酸丁酯物质的量的比  相似文献   

13.
Nano-TiO2 is frequently used as an optimal photocatalyst, since it is nontoxic, low cost, and environmentally friendly, especially for its photocatalytic oxidation action. However, its photocatalytic reducing action has not been widely researched. In this study, TiO2 doped with different concentrations of manganese was prepared by the sol–gel method and characterized using different techniques to analyze the surface structure, phase composition, and surface elements of the different materials. To investigate the photocatalytic activity, Mn–TiO2 was used for photocatalytic reduction of Cr(VI). Moreover, various organic pollutants were added to determine whether they enhanced the photocatalytic reduction of Cr(VI). The experiments indicated that the presence of Mn in TiO2 could enhance its photocatalytic reduction action, especially at 0.02 % molar ratio. Manganese ions doped in TiO2 behaved as electron accumulation sites. In addition, pH value, and photocatalyst dosage were investigated to analyze their effects on the photocatalytic reduction action. The results show that lower pH value improved the efficiency of photocatalytic reduction; there were no significant changes in the photocatalytic reduction rate with dosage above 1.0 g/L. In the presence of different electron donors (organic pollutants as hole scavengers), the photocatalytic reduction of Cr(VI) was generally improved. In short, manganese-doped TiO2 exhibited improved photocatalytic reduction activity, especially in cooperation with various organics.  相似文献   

14.
(Fe, N) co-doped titanium dioxide powders have been prepared by a quick, low-temperature hydrothermal method using TiOSO4, CO(NH2)2, Fe(NO3)3, and CN3H5 · HCl as starting materials. The synthesized powders were characterized by XRD, TEM, BET, XPS, and UV–Vis spectroscopy. Experimental results show that the as-synthesized TiO2 powders are present as the anatase phase and that the N and Fe ions have been doped into the TiO2 lattice. The specific surface area of the powders is 167.8 m2/g by the BET method and the mean grain size is about 11 nm, calculated by Scherrer’s formula. UV–Vis absorption spectra show that the edge of the photon absorption has been red-shifted up to 605 nm. The doped titanium dioxide powders had excellent photocatalytic activity during the process of photo-degradation of formaldehyde and some TVOC gases under visible light irradiation.  相似文献   

15.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC2纳米碳化物涂层,并以所得TaTiC2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta2O5/TiO2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta2O5/TiO2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC2晶相存在且具有纳米级的颗粒尺寸。中空Ta2O5/TiO2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTinTa=2.5∶1.5时,相应的中空Ta2O5/TiO2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

16.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC_2纳米碳化物涂层,并以所得TaTiC_2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta_2O_5/TiO_2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta_2O_5/TiO_2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC_2晶相存在且具有纳米级的颗粒尺寸。中空Ta_2O_5/TiO_2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO_2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTi∶nTa=2.5∶1.5时,相应的中空Ta_2O_5/TiO_2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

17.
以TiO2纳米粒子为主催化剂,采用"浸渍-还原法"构筑了铜、镍共负载的二氧化钛基光催化系统。以苯为起始原料,H2O2为氧化剂,研究了Cu/Ni助催化剂对TiO2可见光催化制取苯酚性能的影响并对Cu/Ni助催化剂的作用机制进行了探讨。结果表明,在可见光照射下,纯TiO2纳米粒子对苯氧化制取苯酚反应没有催化活性。铜、镍的引入可以明显地增强Ti02可见光催化制取苯酚的活性。当使用负载有铜、镍的TiO2作为催化剂时,苯酚的产率可达到18%。结果还表明Cu、Ni之间存在着很强的协同作用。在该协同作用下,Cu、Ni共负载的TiO2纳米粒子表现出了较单一金属负载的TiO2纳米粒子高得多的光催化活性。  相似文献   

18.
以TiO2纳米粒子为主催化剂, 采用“浸渍-还原法”构筑了铜、镍共负载的二氧化钛基光催化系统。以苯为起始原料, H2O2为氧化剂, 研究了Cu/Ni助催化剂对TiO2可见光催化制取苯酚性能的影响并对Cu/Ni助催化剂的作用机制进行了探讨。结果表明, 在可见光照射下, 纯TiO2纳米粒子对苯氧化制取苯酚反应没有催化活性。铜、镍的引入可以明显地增强TiO2可见光催化制取苯酚的活性。当使用负载有铜、镍的TiO2作为催化剂时, 苯酚的产率可达到18%。结果还表明Cu、Ni之间存在着很强的协同作用。在该协同作用下, Cu、Ni共负载的TiO2纳米粒子表现出了较单一金属负载的TiO2纳米粒子高得多的光催化活性。  相似文献   

19.
过渡金属离子置换钛酸纳米管的制备和光催化活性   总被引:4,自引:0,他引:4  
TiO2纳米粉体和纳米膜材料在光催化降解大气和水中的污染物等方面具有广泛的应用[1]。近年来,以TiO2为原料与浓N aO H反应合成的钛酸纳米管具有比其原料TiO2更大的表面积和孔体积,且对丙烯有光催化氧化降解活性而备受关注[2]。以往在对TiO2纳米粉体和纳米膜材料在光催化研究中,人们发现由于光激发产生的电子与空穴的复合,导致光量子效率很低。为克服这个缺点,人们使用过渡金属离子掺杂等多种手段对TiO2进行改性[3]。但钛酸纳米管相类似的研究还未见报道。对钛酸纳米管的结构和组成的研究表明[4],此纳米管状物的组成是N axH2-xTi3O7,…  相似文献   

20.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号