首页 | 本学科首页   官方微博 | 高级检索  
     检索      

中空Ta_2O_5/TiO_2复合光催化剂的可控氧化制备及性能
引用本文:陈佳,张江,李轩科,袁观明,董志军,丛野,李艳军,崔正威.中空Ta_2O_5/TiO_2复合光催化剂的可控氧化制备及性能[J].无机化学学报,2017,33(6):1015-1022.
作者姓名:陈佳  张江  李轩科  袁观明  董志军  丛野  李艳军  崔正威
作者单位:武汉科技大学耐火材料与高温陶瓷国家重点实验室, 武汉 430081;武汉科技大学化学与化工学院, 湖北省煤转化与新型炭材料重点实验室, 武汉 430081,武汉科技大学耐火材料与高温陶瓷国家重点实验室, 武汉 430081;武汉科技大学化学与化工学院, 湖北省煤转化与新型炭材料重点实验室, 武汉 430081,武汉科技大学耐火材料与高温陶瓷国家重点实验室, 武汉 430081;武汉科技大学化学与化工学院, 湖北省煤转化与新型炭材料重点实验室, 武汉 430081,武汉科技大学化学与化工学院, 湖北省煤转化与新型炭材料重点实验室, 武汉 430081,武汉科技大学化学与化工学院, 湖北省煤转化与新型炭材料重点实验室, 武汉 430081,武汉科技大学化学与化工学院, 湖北省煤转化与新型炭材料重点实验室, 武汉 430081,武汉科技大学化学与化工学院, 湖北省煤转化与新型炭材料重点实验室, 武汉 430081,武汉科技大学化学与化工学院, 湖北省煤转化与新型炭材料重点实验室, 武汉 430081
基金项目:国家自然科学基金(No.51402221,51472186,51372177)资助项目
摘    要:以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC_2纳米碳化物涂层,并以所得TaTiC_2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta_2O_5/TiO_2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta_2O_5/TiO_2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC_2晶相存在且具有纳米级的颗粒尺寸。中空Ta_2O_5/TiO_2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO_2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTi∶nTa=2.5∶1.5时,相应的中空Ta_2O_5/TiO_2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。

关 键 词:熔盐  可控氧化  中空  碳化物涂层  Ta2O5/TiO2  光催化
收稿时间:2017/1/20 0:00:00
修稿时间:2017/4/20 0:00:00

Controllable Oxidation Preparation and Performances of Hollow Ta2O5/TiO2 Composite Photocatalysts
CHEN Ji,ZHANG Jiang,LI Xuan-Ke,YUAN Guan-Ming,DONG Zhi-Jun,CONG Ye,LI Yan-Jun and CUI Zheng-Wei.Controllable Oxidation Preparation and Performances of Hollow Ta2O5/TiO2 Composite Photocatalysts[J].Chinese Journal of Inorganic Chemistry,2017,33(6):1015-1022.
Authors:CHEN Ji  ZHANG Jiang  LI Xuan-Ke  YUAN Guan-Ming  DONG Zhi-Jun  CONG Ye  LI Yan-Jun and CUI Zheng-Wei
Institution:The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China,The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China,The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China and Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract:Using Ti and Ta powders as raw materials, carbon black as the reactive template, the nanosized carbide coating of TaTiC2 were grown in situ on the surface of carbon black by molten salt reaction. And using the as-prepared TaTiC2/C composites as the carbide precursors, the hollow Ta2O5/TiO2 composite photocatalysts were prepared by the controllable oxidation. The morphology, microstructure and pore structure of as-synthesized photocatalyst were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy (DRS) and N2 physical adsorption measurements. With methylene blue as the aimed degradation pollutant and mercury lamp as light source, The photocatalytic activities of hollow Ta2O5/TiO2 composite photocatalysts were evaluated by the photocatalytic degradation of methylene blue solution. Results indicated that the carbide coatings synthesized by molten salt reaction have uniform thickness (20~30 nm). TaTiC2 was the main crystalline phase of carbide and had nanosized particle size. The hollow Ta2O5/TiO2 composite photocatalysts have hollow macroporous structure of about 200 nm and mesoporous structure of about 10 nm in the shell. The existence of hollow macropores and mesopores can improve the adsorption of as-prepared photocatalysts for methylene blue. In addition, the coupling of electronic energy band structures of TiO2 and Ta2O5 can enhance the separation efficiency of photogenerated electrons and holes remarkably. Furthermore, the photocatalytic activity was improved observably. When the nTi:nTa is 2.5:1.5, the corresponding hollow Ta2O5/TiO2 composite photocatalyst exhibits the highest photocatalytic activity, and the ultraviolet light photocatalytic degradation rate for methylene blue is up to 97%.
Keywords:molten salt  controllable oxidation  hollow  carbide coating  Ta2O5/TiO2  photocatalysis
本文献已被 CNKI 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号