首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 734 毫秒
1.
高书燕  范豪 《化学通报》2013,(3):202-209
电极是电化学超级电容器的重要组成部分,电极材料是决定超级电容器性能的最重要因素。金属氧化物电极材料兼有双电层电容和准电容性质,其比电容远远大于活性炭材料表面的双电层电容,基于金属氧化物电极材料的超级电容器具有使用寿命长、维护简单等优点,是一种新型、高效、实用的能量存储装置,引起研究者的广泛兴趣。本文综述了基于金属氧化物电极材料的赝电容器的储能原理、类型和性能的研究现状,并展望了其发展前景。  相似文献   

2.
对高性能超级电容器不断增长的需求促进了电极隔膜和电极材料的快速发展。静电纺丝法制备的纳米纤维具有较高的孔隙率、较好电化学活性、较大的表面积以及良好的结构稳定性等优点,已被广泛应用于超级电容器的隔膜和电极材料。本文简要综述了近年来电纺纳米纤维在超级电容器用隔膜和电极材料的研究进展;着重讨论了通过静电纺丝和其他后处理方法制备的碳基纳米纤维、碳基复合纳米纤维、导电聚合物基复合纳米纤维和金属氧化物纳米纤维等用于超级电容器的电极材料。研究表明,多孔结构的构建、活化处理以及杂原子掺杂可以提高碳纳米纤维的比表面积、电化学活性、润湿性和石墨化程度,从而增强其电化学性能。此外,通过共混、化学沉积和电化学沉积等方法,将碳纳米纤维与金属氧化物、导电聚合物结合,可以改善其电容、倍率性能和循环稳定性。最后,提出上述研究中存在的问题,并对未来静电纺丝纳米纤维材料在超级电容器的发展前景进行了展望。  相似文献   

3.
超级电容器是一类利用电化学双电层或电极材料在电极/溶液界面发生的氧化还原反应来存储能量的装置,除兼有常规电容器功率密度大和二次电池能量密度高的特点外,还具有可逆性好和循环寿命长等优点.本文重点介绍了近几年国内外对中孔炭材料、表面官能团修饰中孔炭材料、中孔炭-金属氧化物、中孔炭-导电聚合物等几类电极材料的研究现状;并且展望了超级电容器用中孔炭及其复合电极材料的当前研究热点和发展前景.  相似文献   

4.
碳基双电层电容器的结构、机理及研究进展   总被引:8,自引:0,他引:8  
孟庆函  李开喜  凌立成 《化学通报》2001,64(11):680-685
活性炭基双电层电容器是一种新型电化学能量储存装置,其储电机理是利用电极材料比较大的比表面积在电极和电解液之间形成双电层储存电荷,充放电过程中无化学反应发生。活性炭材料由于具有较大的比表面积、良好的孔结构分布、化学惰性表面等,一直是双电层电容器电极的首选材料。本文简要介绍了双电层电容器的制造工艺、应用及发展趋势。  相似文献   

5.
赝电容电容器相比于双电层电容器拥有更高的比容量(大约10~100倍),由于在充电/放电过程中法拉第反应同时在电极材料表面和内部发生。因此,会产生更多电子,拥有更大的比容量。目前,赝电容电极材料的研究主要集中在金属氧化物和导电聚合物。镍锰基金属氧化物具有较高的理论比容量、成本低、无毒、环境友好等优点,但是其实际的电化学性能远低于理论值。因此,为了提升材料的电化学表现,研究者提出许多有效的策略,例如:制备不同种类金属氧化物作为电极材料;采用不同的工艺制备高比表面积的材料以及不同材料之间的复合产生协同作用等。本文综述了镍锰基二元金属氧化物(NiMnO3、NiMn2O4和Ni6MnO8)作为赝电容电极材料在超级电容器上的应用进展,同时结合目前研究方法进一步提出未来金属氧化物电极材料方面的发展方向,为继续深入研究提供一定的指导作用。  相似文献   

6.
余林颇  陈政 《电化学》2017,23(5):533
本文从作者所在的课题组在超级电容器和超级电容电池方向的研究内容为基础,在电极材料和装置层面综述了电容性电化学储能装置的发展. 导电聚合物和过渡金属氧化物分别与碳纳米管复合后的复合物能显著提高前两者作为电容性法拉第储能电极的电容性能. 活性炭和碳黑等一类碳材料则可作为非法拉第储能的电极材料. 通过对超级电容器正负极电容做相应的匹配调整可以提高超级电容器的最大充电电压,从而提高超级电容器的能量容量. 此外,为了与实际设备相匹配,超级电容可以以双极板的方式串联堆积,满足高电压的需求. 超级电容电池作为新一代的电容性电化学储能装置,分别由具有电容性和法拉第电荷储存原理的电极组成,具有高比功率和高比能量的特点,也是近年来的研究热点.  相似文献   

7.
《电化学》2017,(5)
本文从作者所在的课题组在超级电容器和超级电容电池方向的研究内容为基础,在电极材料和装置层面综述了电容性电化学储能装置的发展.导电聚合物和过渡金属氧化物分别与碳纳米管复合后的复合物能显著提高前两者作为电容性法拉第储能电极的电容性能.活性碳和碳黑等一类碳材料则可作为非法拉第储能的电极材料.通过对超级电容器正负极电容做相应的匹配调整可以提高超级电容器的最大充电电压,从而提高超级电容器的能量容量.此外,为了与实际设备相匹配,超级电容可以以双极板的方式串联堆积,满足高电压的需求.超级电容电池作为新一代的电容性电化学储能装置,分别由具有电容性和法拉第电荷储存原理的电极组成,具有高比功率和高比能量的特点,也是近年来的研究热点.  相似文献   

8.
电化学超级电容器电极材料的研究进展   总被引:9,自引:0,他引:9  
苗小丽  邓正华 《合成化学》2002,10(2):106-109,119
回顾了电化学超级电容器电极材料的研究进展,并对不同电极材料的储能原理和性能特点进行了简要的阐述。参考文献29篇。  相似文献   

9.
静电纺丝纳米纤维具有比表面积大、孔隙率高及密度低等优势,是电化学储能材料的理想候选者之一.本文综述了近年来静电纺丝碳纳米纤维、金属氧化物/硫化物/氮化物、导电聚合物及其复合材料在超级电容器领域的研究及应用进展,探讨了材料组成、结构与电化学电容性能之间的关系,并对静电纺丝纳米纤维基电极材料的发展前景进行了展望.这将为新型高性能超级电容器电极材料的结构设计与可控制备提供新思路.  相似文献   

10.
聚吡咯以其制备简单、掺杂可逆、环境友好、导电率高、比电容大、具有良好的成膜性而备受关注。特别是在作为超级电容器、二次电池等换能设备电极材料领域中前景广阔。文章简略地介绍了超级电容器的双电层电容和法拉第赝电容产生的机理,概述了近年来聚吡咯与金属氧化物、炭材料等通过化学法、电化学法以及界面化学法等新型手段制备聚吡咯电极的研究进展。  相似文献   

11.
盘盈滢  胡茜  林晓明  许旋  罗一帆 《化学通报》2020,83(10):883-890
金属–有机框架(MOFs)材料具有比表面积较大、孔径可调、制备容易、结构与功能多样性等优势,被广泛应用于电化学能源转化与储存领域。其中独特的核壳结构材料由于表面修饰的作用往往更能表现出核内与壳层的协同作用。本文介绍了具有核壳结构MOFs作为锂离子电池负极材料的发展现状,并重点综述其衍生物(多孔碳材料、金属氧化物、金属硫/硒化物以及金属/金属氧化物)的制备方法以及在锂离子电池负极中的应用。MOFs通过高温煅烧或改变化学反应条件的方法,可制备出结构可调的传统无机电极材料并表现出更优异的电化学性能。最后总结了核壳结构MOFs材料作为锂电负极材料存在的问题和挑战,并提出可能的解决途径和未来的应用前景。  相似文献   

12.
一维金属氧化物纳米材料由于其特殊的结构和性质而倍受关注,通过负载、填充或包裹等修饰方法可以进一步提高和改善其性能。本文综述了一维金属氧化物的一些应用以及制备方法,并对一维金属氧化物的修饰方法以及进展进行了评述。  相似文献   

13.
表面修饰是一种重要的材料处理手段,被广泛应用于催化、光化学、电化学等领域。本文阐述了通过表面均匀包覆构建具有特定功能核壳结构的意义,并分析了构筑均匀包覆层的典型合成方法。同时,针对锂离子电池电极材料这一特定应用对象,综述了进行电极材料表面均匀包覆处理的途径,强调了电极材料核壳结构的构筑对于电极材料表面稳定、电化学性能优化等意义。  相似文献   

14.
近年来,全钒液流电池作为一种大规模储能装置,其电极材料得到了广泛的研究,并且获得了一定的进展.本文简述了全钒液流电池对电极材料的要求,综述了其电极材料的研究进展,重点介绍了碳电极及其改性方面的工作,并对其电极材料的发展趋势进行了展望.  相似文献   

15.
Potassium-ion battery (KIB) represents an emerging battery technology. Here in this review, we highlight the research progress of cathode materials for KIBs in recent 2 years. Statuses of four typical cathodes, layered metal oxides, polyanion compounds, Prussian blue analogs, and organic cathodes are discussed. Electrochemical performances of the cathode materials are improved through tailoring of the composition, microstructure, and surface modification of the electrodes. Regulating electrode–electrolyte interface also brings about prominent improvement in the rate capability and cycling stability of the cathodes. In particular, we speculate that both layered metal oxides and polyanion compounds should be of great application potential as cathodes for the future KIB full cells.  相似文献   

16.
对高性能超级电容器不断增长的需求促进了无粘合剂电极材料的快速发展。静电纺纳米纤维由于具有良好的柔性、大比表面积、高孔隙率、容易制备等优点引起了研究者们的强烈关注。本文综述了静电纺纳米纤维基无粘合剂电极材料在超级电容器领域的研究进展,阐述了不同材料的设计制备过程和提升电化学性能的诸多方法,并指明了静电纺纳米纤维基超级电容器无粘合剂电极材料的发展机遇与挑战,为性能优异的无粘合剂超级电容器电极材料的进一步开发与应用拓宽了思路。  相似文献   

17.
Layered structural lithium metal oxides with rhombohedral α-NaFeO2 crystal structure have been proven to be particularly suitable for application as cathode materials in lithium-ion batteries. Compared with LiCoO2, lithium nickel manganese oxides are promising, inexpensive, nontoxic, and have high thermal stability; thus, they are extensively studied as alternative cathode electrode materials to the commercial LiCoO2 electrode. However, a lot of work needs to be done to reduce cost and extend the effective lifetime. In this paper, the development of the layered lithium nickel manganese oxide cathode materials is reviewed from synthesis method, coating, doping to modification, lithium-rich materials, nanostructured materials, and so on, which can make electrochemical performance better. The prospects of lithium nickel manganese oxides as cathode materials for lithium-ion batteries are also looked forward to.  相似文献   

18.
Layered transition metal oxides (layered materials) have the advantages of simple synthesis methods, high average operating voltages, and good specific capacity, and are therefore promising cathode materials for sodium-ion batteries (SIBs). However, the capacity retention of these materials is poor due to the dissolution of transition metals caused by the detrimental reactions of the electrode with the electrolyte and the rupture of the electrode due to volume expansion during cycling. Studies have discovered that surface modification can effectively improve the aforementioned problems. This paper reviews the effects of different coating materials (e. g., carbon coatings, metal oxide coatings, phosphate coatings, etc.) on the performances of layered cathode materials and analyzes the reasons for the improved performance. In addition, the limitations of different coating materials and coating methods are presented, and future developments are proposed.  相似文献   

19.
炭-/石墨烯量子点作为新兴的炭纳米材料,因具有独特的小尺寸效应和丰富的边缘活性位点而在高性能超级电容器电极材料的研发方面展现出巨大潜力。针对目前炭-/石墨烯量子点在超级电容器电极材料方面的应用优势和存在的关键问题,本文以炭-/石墨烯量子点、量子点/导电炭复合材料、量子点/金属氧化物复合材料、量子点/导电聚合物复合材料以及量子点衍生炭这些电极材料为脉络,梳理了近年来该领域的发展状况,尝试阐释炭-/石墨烯量子点在电极材料、复合材料和衍生炭电极材料中所起到的关键作用,最后对炭-/石墨烯量子点电极材料的发展进行了展望。本综述以期为炭-/石墨烯量子点基电极材料的研究提供一定参考和依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号