首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
首先采用溶液法在碳布上生长Co-MOF二维纳米片,通过高温退火和刻蚀后得到MOF衍生多孔碳纳米片。以Co-MOF衍生的多孔碳纳米片/碳布(CNS/CC)作为碳基骨架,采用电化学沉积法负载高活性氮掺杂石墨烯量子点(N-GQDs),制备得到分级多孔结构的N-GQD/CNS/CC复合材料。组装成自支撑且无粘结剂的N-GQD/CNS/CC电极,当电流密度为1 A·g~(-1)时,其比电容高达423 F·g~(-1)。通过储能机制和电容贡献机制的研究表明,在碳纤维上原位生长的具有高双电层电容的CNS和表面负载具有高赝电容的N-GQDs之间相互协同作用,使得N-GQD/CNS/CC电极具有高电容性能,是一种理想的超级电容器电极材料。电极材料的高导电、分级多孔结构有利于电子的传输和电解质离子的扩散,具有良好的动力学性能,能快速充放电和具有优异的倍率特性。将电极组装成对称型超级电容器,功率密度为250 W·kg~(-1)时对应的能量密度达到7.9 Wh·kg~(-1),且经过10 000次循环后电容保持率为91.2%,说明氮掺杂石墨烯量子点/MOF衍生多孔碳纳米片复合材料是一种电化学性能稳定的具有高电容性能的全碳电极材料。  相似文献   

2.
炭/导电聚合物复合材料是近年来发展起来应用于超级电容器的一种新型电极材料。炭材料与氧化物的复合材料,或者炭材料与导电聚合物的复合材料,能够将双电层电容与法拉第电容结合,既可提高超级电容器的比电容,改变其充放电电压,又可提高其循环性能。本文综述了近年来国内外各种炭材料,如活性炭,碳纳米管等与导电聚合物复合材料的研究进展,认为炭与导电聚合物的复合材料,尤其是性能优良的炭气凝胶,模板法制备的中孔炭,以及由金属或非金属碳化物与氯气等刻蚀剂反应制备的骨架炭与导电聚合物的复合材料是超级电容器电极材料研究的一个重要发展方向。  相似文献   

3.
炭电极材料是超级电容器的核心,该领域的研究近年来相当活跃,活性炭粉、活性炭纤维、碳凝胶、碳纳米管、玻态炭、模板炭、碳化物衍生炭、石墨烯等各种多孔炭材料用作超级电容器电极材料的研究都有报道.本文概述了我们近年来在超级电容器炭电极材料方面的研究工作,主要介绍了强碱化学活化制备活性炭电极材料、纳米CaCO3模板法制备介孔炭电...  相似文献   

4.
超级电容器是目前研究较多的新型储能元件,其大的比电容、高的循环稳定性以及快速的充放电过程等优良特性,使其在电能储存及转化方面得到广泛应用。超级电容器的电极材料是它的技术核心。石墨烯作为一种新型的纳米材料,具有良好的导电性和较大的比表面积,可作为超级电容器的电极材料。利用其他导电物质对石墨烯进行改性和复合,可以在保持其本身独特优点的同时提高作为电极材料的导电率、循环稳定性等其他性能。本文从半导体/石墨烯复合材料、金属及金属氧化物/石墨烯复合材料、石墨烯/导电聚合物复合材料3个方面综述了复合改性后的石墨烯在超级电容器电极材料方面的研究进展。通过对各复合物电极材料的制备方法和性能的对比分析,指出石墨烯基复合物作为超级电容器的电极材料的未来研究内容是开发低成本、高比容量和高循环稳定性的复合物。  相似文献   

5.
通过将吡咯单体在低温下与石墨烯量子点进行原位聚合,获得一种全新的聚吡咯/石墨烯量子点(PPY/GQD)复合材料.实验中采用了扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线衍射(XRD)、红外光谱(FT-IR)和热重分析(TGA)对复合物的表面形貌、结构进行表征.结果表明,吡咯单体以石墨烯量子点为软模板,以化学键的方式在石墨烯量子点的表面聚合生长成片状聚吡咯.通过机械冷压法将粉末状PPY/GQD复合物压成圆片电极.电极的电化学测试结果表明,PPY和GQD质量比为50:1所制得的复合物的电容量为485 F.g-1,同时在2000次循环之后电容量只降低了大约2%.通过与同比例的PG(聚吡咯/石墨烯复合材料)以及纯PPY对比,发现聚吡咯/石墨烯量子点的高比容量及优异的循环稳定性将会使其在电化学超级电容器领域中具有潜在的应用价值.  相似文献   

6.
超级电容器是一类利用电化学双电层或电极材料在电极/溶液界面发生的氧化还原反应来存储能量的装置,除兼有常规电容器功率密度大和二次电池能量密度高的特点外,还具有可逆性好和循环寿命长等优点.本文重点介绍了近几年国内外对中孔炭材料、表面官能团修饰中孔炭材料、中孔炭-金属氧化物、中孔炭-导电聚合物等几类电极材料的研究现状;并且展望了超级电容器用中孔炭及其复合电极材料的当前研究热点和发展前景.  相似文献   

7.
超级电容器用石墨烯/金属氧化物复合材料   总被引:2,自引:0,他引:2  
超级电容器是一种具有高功率密度和长循环寿命的新型储能装置,碳材料、金属氧化物和导电聚合物是常见的三种超级电容器电极材料。在石墨烯/金属氧化物复合材料中,石墨烯和金属氧化物可以发挥各自的优点,结合石墨烯优异的循环稳定性能和金属氧化物的高容量特性,纳米复合材料的综合性能可以得到很大地提升。因此,石墨烯/金属氧化物复合物的研究是超级电容器领域的热点研究方向之一。本文以金属氧化物的种类、石墨烯的结构和复合物的制备方法为线索,综述了国内外应用于超级电容器方面的石墨烯/金属氧化物复合材料的研究进展,归纳总结出与石墨烯复合最优的金属氧化物类型和制备方法,并进一步对该类复合材料的发展趋势进行了展望。  相似文献   

8.
聚苯胺理论比容量高,具有优良的导电性能,是理想的超级电容器电极材料。但是,在长期的充放电过程中容易发生体积的收缩与膨胀,循环寿命差。同时,石墨烯由于具有高的理论比表面积,被广泛用作超级电容器电极材料。将聚苯胺与石墨烯复合,利用二者的协同作用,使复合材料具有优异的电化学性能。本文综述了石墨烯/聚苯胺复合材料的制备方法以及近年来在超级电容器领域的主要研究成果,并就其目前存在的主要问题进行了讨论,最后对石墨烯/聚苯胺复合材料的前景进行了展望。  相似文献   

9.
金玉红  王莉  尚玉明  高剑  李建军  何向明 《化学通报》2014,77(11):1045-1053
超级电容器具有功率密度高、充放电速度快、循环寿命长和维护成本低的特点,在电动车动力电池领域具有潜在的应用前景。超级电容器性能主要由其电极材料所决定。聚苯胺易合成、理论比容量高,而且导电性能优异,作为超级电容器电极材料有很高的应用价值。但是,在长期使用过程中,它的体积容易发生膨胀或收缩,循环寿命差。为了解决这个问题,将聚苯胺与石墨烯复合可以扬长避短,充分利用两者之间的协同效应,赋予复合材料优异电化学电容性能。本文综述了超级电容器用石墨烯-聚苯胺复合材料的制备方法,包括原位聚合法、油水界面合成法、电化学合成法、层层自组装法等;提出了三维网状石墨烯和对石墨烯-聚苯胺复合材料进行改性来提高复合材料的电化学电容性能的思路。  相似文献   

10.
基于碳纳米管的超级电容器研究进展   总被引:2,自引:1,他引:1  
综述了基于碳纳米管及其复合材料作超级电容器的电极材料的研究现状,通过对碳纳米管的改性或与其它材料复合,能有效地提高电容器的电容特性。总结了近几年来在开发超级电容器电极材料领域中对碳纳米管的活化和提高碳纳米管的分散性技术、碳纳米管与过渡金属氧化物复合材料、碳纳米管与导电聚合物复合材料以及碳纳米管与石墨烯复合材料研究的进展。  相似文献   

11.
胶体离子超级电容器的比容量评价   总被引:1,自引:1,他引:0  
胶体离子超级电容器作为一种新型的超级电容器,其同时具有能量密度和功率密度高的独特优势。 目前已经发展了包括多种过渡金属阳离子和稀土阳离子,例如Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Sn2+、Sn4+、La3+、Ce3+、Er3+和Yb3+的胶体离子超级电容器体系。 在电化学反应中,识别出电活性物质的存在形式对研究电极反应机理和提高比容量具有重要价值。 本文主要通过对电活性物质比容量的探讨,理解这种新型胶体离子超级电容器的电化学储能机理。 评述了胶体离子超级电容器的比容量核算方式,提出了以阳离子为标准核算比容量的原因,并与传统超级电容器的核算方式进行了比较,表明胶体离子超级电容器在提高能量密度方面具有潜在优势,有望突破现有电化学储能设备的技术瓶颈,实现下一代高能量储能器件的开发。  相似文献   

12.
植物基多孔炭具有发达的孔结构、大的表面积、较为成熟的制备工艺、丰富的来源、低廉的价格,是目前商业应用范围最广的超级电容器电极材料。然而在实际应用中仍然存在着质量/体积比容量较低、倍率性能差等问题。本文针对先进电容器件的高能量密度、优异功率性能的要求,首先介绍了近年来发展的植物基多孔炭的制备方法,讨论了植物前驱体的组成和结构对其产物结构的影响以及与其电化学性能之间的构效关系,特别总结了近年来植物基超大比表面积多孔炭、中孔炭、层次化多孔炭的制备方法和电容储能性能。针对大比表面积多孔炭用于超级电容器时的体积性能不佳这一关键问题,本文还总结了提高植物基多孔炭体积电化学性能的方法。最后,对植物基多孔电极材料存在的问题进行了分析与总结,并展望了其研究前景。  相似文献   

13.
超级电容器作为一种新型的能源存储装置,因为其比容量大、充放电速度快、循环寿命长等优点,在储能领域引起了极为广泛的关注。电极材料是决定超级电容器性能的核心因素,其中,常用的超级电容器电极材料主要有如下三类:碳基材料、金属氧化物及氢氧化物材料和导电聚合物材料。本文综述了超级电容器的工作原理并详细介绍了基于碳材料及其二元、三元复合体系的电极材料的研究进展。  相似文献   

14.
设计高性能的可压缩电极是实现可压缩电容器器件的关键,碳海绵(CS)具有理想的压缩形变,但却受制于有限的容量。本工作以CS为可压缩基底,通过恒电流沉积及低温热处理技术,在CS骨架上均匀沉积了α-Fe_2O_3纳米片。复合电极中Fe_2O_3的负载量随沉积时间的延长逐渐增加,且在沉积16 h后达到饱和。系统地考察了CS-Fe_2O_3复合电极在不同压力下的可压缩性能,并在三电极体系中,通过循环伏安、恒电流充放电等方法研究了CS-Fe_2O_3复合电极在3.0mol·L~(-1)KOH电解液中的电容性能。结果表明,当复合电极CS-Fe_2O_3压缩率减小时,电极的内阻增大,比电容相应减小。CSFe_2O_3-12电极在电流密度为1 A·g~(-1)时的最大比电容为294 F·g~(-1),且经过10000次恒电流充放电后,电容量仍然能保持初始值的81%,是一种潜在的电化学性能稳定的可压缩超级电容器电极材料。  相似文献   

15.
Porous activated carbon felts (ACFs) with exfoliated graphene nanosheets were prepared by a simple thermal treatment strategy. They exhibit high gravimetric and areal specific capacitances as well as long-term cycling stability. Impressively, the all-solid-state supercapacitors based on ACFs electrodes deliver stable electrochemical performance even under different bending states.  相似文献   

16.
The development of high-performance supercapacitor electrode materials is imperative to alleviate the ongoing energy crisis. Numerous transition metals (oxides) have been studied as electrode materials for supercapacitors owing to their low cost, environmental-friendliness, and excellent electrochemical performance. Among the developed binary transition metal oxides, manganese cobalt oxides typically show high theoretical capacitance and stable electrochemical performance, and are widely used in the electrode materials of supercapacitors. However, the poor conductivity and active material utilization of manganese cobalt oxide-based electrode materials limit their potential capacitance application. Cotton is mainly composed of organic carbon-containing materials, which can be transformed to carbon fibers after calcination. The resultant carbonaceous material exhibits a large specific surface area and good conductivity. Such advantages could potentially suppress the negative effects caused by the poor conductivity and small specific surface area of manganese cobalt oxides, thereby improving the electrochemical performance. Herein, we firstly deposited manganese cobalt oxides on cotton by a simple hydrothermal method, yielding a composite of manganese cobalt oxides and carbon fibers via subsequent calcination, to improve the electrochemical performance of the electrode material. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), and electrochemical characterizations were used to investigate the physical, chemical, and electrochemical properties of the prepared samples. The fabricated manganese cobalt oxides in the composite were uniformly dispersed on the carbon fiber surface, which increased the contact between the interface of the electrode material and electrolyte, and enhanced electrode material utilization. The electrode material was confirmed to have well contacted with the electrolyte during a contact angle test. Hence, a pseudo-capacitance reaction completely occurred on the manganese cobalt oxide material. Moreover, the addition of carbon fibers reduced the resistance of the material, resulting in excellent capacitive performance. The capacitance of the prepared composite was 854 F∙g-1 at a current density of 2 A∙g-1. The capacitance was maintained at 72.3% after 2000 cycles at a current density of 2 A∙g-1. These results indicate that the manganese cobalt oxide and carbon fiber composite is a promising electrode material for high-performance supercapacitors. The findings presented herein provide a strategy for coupling with carbon materials to enhance the performance of supercapacitor electrode materials based on manganese cobalt oxides. Thus, novel insights into the design of high-performance supercapacitors for energy management are provided.  相似文献   

17.
超级电容器寿命长,安全性高,并可以实现快速充放电,是化学电源研究的热点之一。然而,超级电容器的能量密度较低限制了其更多的应用。因此,超级电容器领域的研究关注点在如何提高超级电容器的能量密度。其中,提高比容量是提高能量密度的一种有效途径。本文通过对电极材料和电解液的优化来研究制备得到高容量超级电容器的方法。电极材料的比表面积、孔道结构和导电性对其电化学性能有着直接的影响。一方面,通过优化电极材料的孔道结构和比表面积可以增加活性位点并提高电解液离子传导率,从而得到高比电容。另一方面,电极材料导电性的提高有利于提升其电子传导率从而得到较高的比容量。本文分别对碳材料和金属氧化物/氢氧化物的优化达到了增加双电层电容和赝电容的目的。不仅如此,还可以通过在电解液中增加氧化还原电对从而得到高比电容。这一方法为高容量超级电容器的制备提供了新的思路。  相似文献   

18.
对高性能超级电容器不断增长的需求促进了无粘合剂电极材料的快速发展。静电纺纳米纤维由于具有良好的柔性、大比表面积、高孔隙率、容易制备等优点引起了研究者们的强烈关注。本文综述了静电纺纳米纤维基无粘合剂电极材料在超级电容器领域的研究进展,阐述了不同材料的设计制备过程和提升电化学性能的诸多方法,并指明了静电纺纳米纤维基超级电容器无粘合剂电极材料的发展机遇与挑战,为性能优异的无粘合剂超级电容器电极材料的进一步开发与应用拓宽了思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号