首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
近年来,以雾霾为代表的大气污染问题严重影响到经济社会的可持续发展.其中,氮氧化物(NOx)的大量排放是导致雾霾天气的重要原因之一.氨选择性催化还原(NH3-SCR)是目前消除氮氧化物的主流技术,低温NH3-SCR更是广泛应用于钢铁、焦化、水泥、玻璃、陶瓷和垃圾焚烧等行业的烟气排放治理.传统的V2O5-WO3/Ti O2催化剂活性温度高(300–400 oC)且钒具有生物毒性,因此亟待开发环境友好的低温非钒基脱硝催化剂.最近, Ce Ti Ox基催化剂由于在中高温段(250–400 oC)表现出优异的脱硝性能而得到广泛关注.然而,该催化剂仍面临低温活性差及抗硫性能差的问题,制约了其工业化应用.研究显示,添加过渡金属可提高Ce Ti Ox基催化剂的脱硝活性和抗硫中毒性能,这主要是因为过渡金属的添加可以有效改善催化剂的氧化还原性能和表面酸性.Mo O3作为一种可以提供大量酸性位的氧化物,常被用作助剂改善钒钨钛催化剂的活性.研究显示, Mo O3的引入可以促进催化剂中钒物种的分散度以及提高表面酸性.基于此,我们制备了一系列不同Mo含量的Mo O3/Ce Ti Ox催化剂,以期提高Ce Ti Ox催化剂的低温脱硝性能及抗SO2中毒能力,并着重研究表面Mo的修饰对Ce Ti Ox催化剂物理化学性质的影响.研究发现,表面Mo修饰可以显著提高Ce Ti Ox的低温催化活性,其脱硝效率在150 oC即可达到80%,同时抗SO2中毒能力也得到增强.进一步借助X射线衍射、比表面积测定、氢气程序升温还原、氨气程序升温脱附和X射线光电子能谱等方法对催化剂进行了全面表征分析.结果显示,表面Mo修饰对Ce Ti Ox催化剂物理化学性质的影响与其脱硝性能有着密不可分的关系.首先,钼物种主要是以Mo O3的形式存在于Ce Ti Ox表面,其最佳的负载量为4wt.%.其次,表面Mo的沉积显著提高了催化剂的表面酸量,尤其是Br?nsted酸位的数量,而表面酸位的增加有利于催化剂吸附与活化反应物种NH3;同时,表面Mo修饰还减弱了硝酸盐在催化剂表面的吸附,进一步促使NH3-SCR反应按照Eley-Rideal机理顺利进行.最后,该催化剂在H2O和SO2存在的条件下仍具有最佳的脱硝性能,因而有望用于实际含SO2的低温烟气脱硝.  相似文献   

2.
Mo的引入方式对CeO2脱硝性能的影响   总被引:1,自引:0,他引:1  
固定源排放的氮氧化物(NOx)导致了严重的环境污染问题,NH3选择性催化还原(NH3-SCR)被认为是目前控制NOx排放的最有效技术,已广泛应用于电力行业的烟气排放治理.然而,我国非电行业的NOx减排仍然面临着重大挑战,因为其排放的废气温度通常低于300oC,且含有一定量的SO2,传统的钒基SCR催化剂因活性温度(300~400oC)较高而无法有效发挥作用.因此,亟待开发新型的高效低温SCR催化剂.铈基催化剂由于氧化铈(CeO2)的优异储氧能力(OSC)和良好的氧化还原能力而显示出较好的低温(80~300oC)脱硝性能,如Mn-Ce,W-Ce,Ta-Ce,Cu-Ce和Nb-Ce等.但这些铈基催化剂易被烟气中的SO2毒化而导致催化活性降低.因此,提高铈基SCR催化剂抗硫中毒能力是其产业化应用的关键.已有研究发现,通过构筑结构保护层或添加另一种金属来保护活性组分是提高SCR催化剂抗硫性能的一种可行策略.氧化钼(MoO3)通常被用做传统V2O5/TiO2催化剂的促进剂以提高其水热稳定性和表面酸性.研究表明,在V/Ti催化剂中引入钼物种不仅可以提高其SCR活性,而且提高了V/Ti催化剂的抗SO2性能,这是由于VMo/Ti表面较少的V–O–V键削弱了对SO2的氧化作用.Tang等开发了一种Fe2O3/MoO3纳米片催化剂,显示出比纯Fe2O3更好的抗SO2能力,主要是由于层状结构的MoO3能阻止NH4+在硫酸氢铵中的沉积.目前关于Mo的引入方式即催化剂的制备方法对铈基催化剂物化性能和NH3-SCR催化性能(特别是抗SO2能力)的影响的研究还比较少.本文分别采用浸渍法和沉淀法在CeO2中引入钼物种,制备了Mo-CeO2和MoCe-cp催化剂来探究制备方法对MoCe催化剂的脱硝性能及抗SO2中毒能力的影响.结果表明,引入Mo可以显著地提高CeO2的低温脱硝性能,其中Mo-CeO2催化剂在150 oC即可达到80%以上的脱硝效率,同时抗SO2中毒性能也得到了显著提高.对催化剂结构、氧化还原能力、表面酸度和反应物分子的吸附脱附性质进行了表征,并与MoCe催化剂脱硝性能和抗硫性能相关联.结果表明,Mo-CeO2和MoCe-cp催化剂的物理化学性质和脱硝性能有明显区别.首先,Mo-CeO2中的钼物种主要存在于CeO2表面,而MoCe-cp中的钼物种主要存在于CeO2体相,其为Mo-CeO2表面带来大量的Br?nsted酸位并抑制了硝酸盐的吸附,促使NH3-SCR反应按照Eley-Rideal机理进行,进而表现出优于MoCe-cp的低温活性.其次,Mo-CeO2表面更多的Mo物种抑制了SO2的吸附,从而使Mo-CeO2表现出更好的抗SO2性能.本文为具有实际应用前景的铈基NH3-SCR催化剂的设计提供了参考.  相似文献   

3.
近年来,氨-选择催化还原(NH3-SCR)技术被公认为是控制燃煤烟气和柴油车尾气氮氧化物(NOx)排放的最有效手段之一.V2O5-WO3/TiO2和V2O5-MoO3/TiO2催化剂在300–400°C范围内表现出优异的脱硝性能和抗H2O和SO2中毒性能,因而被广泛用于NH3-SCR过程.然而,钒基催化剂存在一些缺点,如氧化SO2到SO3的活性较高、高温下将部分NH3非选择性地氧化成N2O、V2O5具有生物毒性等.因此,非钒基脱硝催化剂的研制引起人们越来越多的关注.二氧化铈(CeO2)因具有氧化还原性能优异、储/释氧能力强和Ce3+/Ce4+转换容易等优点而广泛用于NH3-SCR反应.然而,单纯CeO2的脱硝性能并不理想.研究表明,将CeO2制备成铈基复合金属氧化物催化剂和负载型铈基催化剂可显著提高其在NH3-SCR反应中的催化性能.尤其是负载型铈基催化剂由于催化性能优异、比表面积大、热稳定性高及活性组分用量少而成为研究热点.众所周知,对于负载型金属氧化物催化剂,载体并不只是惰性材料,它会显著影响表面负载组分的物理化学性质和催化性能.因此,关于载体与组分间相互作用的研究常见诸报道.但是,对于负载型铈基催化剂,具有不同晶相结构的载体对其理化性质和NH3-SCR催化性能的影响规律尚不明晰.此外,SiO2,γ-Al2O3,ZrO2和TiO2是工业上常用的四种催化剂载体,它们具有不同的晶相结构和应用场合,究竟哪一个最适合作为负载型铈基催化剂的载体用于NH3-SCR反应尚无定论.因此,为了阐明负载型铈基催化剂在NH3-SCR反应中的载体效应,筛选出最佳的催化剂载体,我们首先采用溶胶-凝胶法和沉淀法合成了SiO2,γ-Al2O3,ZrO2和TiO2四个载体,再通过浸渍法制备了一系列负载型铈基催化剂(CeO2/SiO2,CeO2/γ-Al2O3,CeO2/ZrO2和CeO2/TiO2)用于NH3-SCR反应.并借助于X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定(BET)、X射线光电子能谱(XPS)、氢气-程序升温还原(H2-TPR)以及氨气-程序升温脱附(NH3-TPD)等表征手段对上述载体和催化剂进行了较为全面的分析.研究结果表明,这些负载型铈基催化剂的理化性质和脱硝性能强烈地依赖于催化剂载体.首先,CeO2/γ-Al2O3催化剂的表面Ce3+含量明显大于CeO2/SiO2,CeO2/ZrO2和CeO2/TiO2催化剂,有利于氧空位的产生以促进NO分子的解离,进而导致优异的NH3-SCR反应性能.其次,CeO2/γ-Al2O3催化剂具有最佳的还原性能,有利于NO氧化为NO2,进而通过"快速NH3-SCR"途径提升其催化性能.再者,CeO2/γ-Al2O3催化剂表面酸性位最多,能够促进反应物NH3分子的吸附与活化,从而提高脱硝性能.最后,CeO2/γ-Al2O3催化剂在H2O和SO2存在的条件下同样表现出最佳的催化性能,表明其有望用于实际燃煤烟气脱硝.  相似文献   

4.
CeO2表面分散态WO3的氨选择性催化还原性能   总被引:1,自引:0,他引:1  
铈基材料在氨选择性催化还原氮氧化物(NH3-SCR)的研究中备受关注,亦被认为是潜在的新型环境友好型催化剂.CeO2具有独特的氧化还原性能和优良的储释氧性能,易与其它金属氧化物发生协同催化而有利于提高催化剂的催化反应性能,而WO3可以改善催化剂的表面酸性.研究亦报道了WO3可以改善CeO2的NH3-SCR反应的高温活性和N2选择性,其原因在于WO3增加了铈基催化剂NH3的吸附性能且抑制了NH3非选择性氧化成NOx.我们采用浸渍法制备了一系列负载型WO3/CeO2催化剂,并利用XRD,Raman,XPS,H2-TPR,NH3-TPD和in situ DRIFT对其理化性质进行了表征,系统研究了WO3负载量对WO3/CeO2催化剂NH3-SCR催化性能的影响,主要研究的内容包括:(1)WO3/CeO2催化剂中WO3的状态与催化性能之间的关系;(2)WO3负载量对WO3/CeO2催化剂的NH3和NO吸附行为的影响.NH3-SCR反应测试表明WO3负载量对WO3/CeO2催化剂有显著影响,优化的WO3/CeO2催化剂在200–450℃具有良好的脱硝性能,且在300℃通入SO2+H2O条件下依然保持优异的催化活性.XPS和H2-TPR结果表明,WO3分散在CeO2表面抑制了CeO2表面活性氧和表面晶格氧的氧化能力,这导致催化剂对NO的氧化以及对硝酸盐的吸附性能相比于纯CeO2显著降低,同时,in situ DRIFT也证实,随着WO3负载量的增加,WO3/CeO2催化剂表面吸附硝酸盐能力下降.因此,我们认为,由于低活性的晶相WO3覆盖在催化剂表面,阻碍了催化剂的表面活性位,降低了催化剂的氧化还原能力和表面酸量,从而晶相WO3抑制了WO3/CeO2催化剂的催化活性.同时,我们发现在70℃下采用氨水可以洗掉WO3/CeO2催化剂中的晶相WO3,且洗涤后的样品催化活性有所提升,这进一步验证了晶相WO3对催化活性的抑制作用.In situ DRIFT结果表明WO3/CeO2催化剂上NH3-SCR反应是通过Eley-Rideal机理进行,即吸附NH3物种与气相NO之间发生反应.随着WO3负载量的增加,WO3/CeO2催化剂中NH3的吸附能力先增强后减弱,而NO吸附能力持续减弱,这有利于表面酸位在反应过程中不被硝酸盐阻碍,当WO3负载量在分散容量附近时,这种吸附特性的效果发挥到最大,从而最大限度地促进NH3-SCR反应按照Eley-Rideal机理顺利进行.  相似文献   

5.
采用调节前驱体溶液pH值的方法制备了用于低温NH3-SCR的V2O5-WO3/Ti O2催化剂。通过XPS、Raman光谱、H2-TPR、NH3-TPD、NH3-DRIFT、XRD及物理吸附等手段对催化剂进行了表征分析,并对其脱硝催化活性进行了测试。结果表明,前驱体溶液酸性的增强能够提高催化剂表面聚合态钒物种和V4+(3+)/V5+的比值以及表面酸性,增加活性位数量、降低反应的活化能、提高其脱硝催化性能。因此,通过提高前驱体溶液的酸性,有助于制备出脱硝活性较好的NH3-SCR催化剂。  相似文献   

6.
以稀土尾矿为研究对象,采用模具成型法制备蜂窝状脱硝催化剂,考察了TiO2和拟薄水铝石载体对稀土尾矿催化剂成型及催化剂脱硝性能的影响,并对成型催化剂进行SEM,XRD,BET,NH3-TPD,H2-TPR和原位红外等表征分析.研究结果表明:载体的种类对成型蜂窝状催化剂的活性有影响,添加拟薄水铝石载体可以提高催化剂的催化脱...  相似文献   

7.
以铝柱撑黏土(Al-PILC)为载体采用旋蒸-浸渍法制备了铜、铁单组分催化剂(Cu/Al-PILC、Fe/Al-PILC)和铜铁复合氧化物催化剂(CuFe/Al-PILC),并测试其对NH3选择性催化还原NO反应(NH3-SCR)的催化性能。相比Cu/Al-PILC和Fe/Al-PILC,CuFe/Al-PILC活性组分之间有较强的协同效应,显著提高了催化剂的脱硝性能。CuFe/Al-PILC在290~450℃的宽温区NO脱除效率保持90%以上,最高可达97%。此外,CuFe/Al-PILC有很好的抗水抗硫性能,催化活性不受反应气氛中水蒸气和SO2的影响。XRD、UV-vis、XPS和N2吸附脱附表征结果表明,CuFe/Al-PILC中活性组分相互作用生成CuFe2O4,有利于活性组分在载体表面分散,提高催化剂的比表面积和孔容;H2-TPR表征结果表明,CuFe/Al-PILC活性组分在载体表面生成的CuFe2O4改善了催化剂氧化还原性能,有利于NH3对NO选择性的还原;NH3-TPD表征结果表明,CuFe/Al-PILC在较宽温区范围内对NH3都有很好的吸附,这有利于提高催化剂表面还原物种的浓度,从而保证催化剂在较宽温区范围内具有较好的NO脱除效率。  相似文献   

8.
氧化钒系催化剂已广泛应用于NO x的氨选择性催化还原(NH3-SCR)反应。氧化钒作为催化剂活性成分,具有较强的氧化性,在NO x的NH3-SCR过程中,其强氧化性会造成氨以及烟气中SO2、汞的氧化,从而影响催化剂的SCR性能。本文对氧化钒系催化剂中钒物种的存在形态进行了总结,并重点阐述了脱硝过程中氧化钒系催化剂的氧化性能及其对脱硝性能的影响。  相似文献   

9.
通过溶胶凝胶法制备了Cux+,Fex+,Nix+和Zrx+掺杂的CeO2-SO42-固体酸NH3-SCR催化剂。利用XRD,IR,NH3-TPD,NH3-TPO,NOx-TPD和NO-TPO等手段研究了过渡金属离子掺杂对CeO2-SO42-催化剂结构、吸附性能、redox性能和NH3-SCR活性的影响。试验结果表明,Nix+和Zrx+掺杂的CeO2-SO42-固体酸催化剂的NH3-SCR活性最好,在250~360℃温度范围内NOx的转化率可达80%以上;Cux+掺杂催化剂的NOx和NH3吸附性能较差,导致催化剂的脱硝效率较低,而Fex+掺杂催化剂虽然具有较好的NH3和NOx吸附性能,但该催化剂对NH3的氧化性能较高,导致高温条件下还原剂的氧化,从而降低了CeO2-SO42-催化剂的活性;Nix+和Zrx+掺杂可以在提高催化剂吸附性能的基础上保持较低的NH3氧化活性,从而使CeO2-SO24-催化剂保持较高的脱硝性能。  相似文献   

10.
杨宝轩  周娇  姚书恒 《分子催化》2022,36(4):301-312
通过对Ce-TiO2催化剂进行SO2+O2气氛下的不同时间的预硫化处理并用于NH3-SCR反应,研究了Ce-TiO2催化剂物化特性随预硫化时间的演变规律,以及预硫化对中低温活性及NH3-SCR反应路径的影响。结果表明Ce-TiO2催化剂表面氧化铈的硫酸化相当迅速,在预硫化处理0.5h后,几乎所有的表面氧化铈都被硫酸盐化形成硫酸铈,随着硫酸化时间的增加到1h和1.5h,Ce-TiO2催化剂上沉积的硫缓慢增加。活性测试表明预硫化后的催化剂对SCR活性的抑制作用随着反应温度的提高而减弱,结合NO-DRIFT、NH3-DRIFT等多种原位表征,结果表明预硫化后低温NH3-SCR活性大幅降低是由于生成硫酸铈后催化剂氧化还原能力大幅削弱,E-R反应路径严重受阻。随着反应温度的升高,SCR活性逐渐不受硫酸铈沉积的影响,一方面,氧化还原性能的提高导致E-R反应路径逐渐恢复;另一方面,硫酸铈的生成促进了NO的活化,增强了L-H反应路径,两者共同导致了预硫化后较高的中温NH3-SCR活性。  相似文献   

11.
本文制备了一系列 Fe-Mn/Al2O3催化剂,并在固定床上考察了其 NH3低温选择性催化还原 NO的性能.首先考察了不同 Fe负载量制备的催化剂的脱硝性能,优选出最佳的 Fe负载量;在此基础上,研究了 Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗 H2O和抗 SO2性能进行了实验研究;同时,对催化剂由于 SO2所造成的失活机制进行了考察.采用 N2吸附-脱附、X射线衍射、透射电镜、能量弥散 X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的 Fe和 Mn负载量均为8%,所制的8Fe-8Mn/Al2O3催化剂在150°C的脱硝效率可达近99%;同时,在整个低温测试区间(90–210°C)的脱硝效率均超过了92.6%. Fe在催化剂表面主要以 Fe3+形态存在,而 Mn主要包括 Mn4+和 Mn3+; Mn的添加提高了 Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对 NH3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的 Mn4+/Mn3+和增强的表面吸附氧.此外,8Fe-8Mn/Al2O3的催化性能受 H2O和 SO2影响较小,抗 H2O和 SO2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好; SO2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.  相似文献   

12.
对于钒氧化物负载型催化剂在NH3-SCR过程中的反应机理和动力学已有较多研究。研究表明反应气体在催化剂表面的吸附-脱附过程对于SCR催化反应具有重要意义。本文概述了钒氧化物催化剂载体和表面物种在催化反应中的作用机理,以及H2O、SO2对NH3-SCR反应的影响,重点阐述了各种气相反应物的吸附形式以及反应作用机理。  相似文献   

13.
用于NH3选择性催化还原NOx的钒基催化剂   总被引:1,自引:0,他引:1  
在富氧且有催化剂存在条件下以NH3或尿素为还原剂选择性地还原NOx为N2的技术,即NH3/Urea-SCR技术,是去除固定源和移动源NOx最为有效且应用最广的技术之一,其中最重要的催化剂体系是钒基催化剂。本文从钒基催化剂的组成及其NH3-SCR反应性能、钒基催化剂的活性改进以及钒基催化剂上的NH3-SCR反应机理三个方面对该领域的研究进展做了较为全面的综述,并对NH3-SCR领域可能的发展方向做了展望。传统的V2O5-WO3(MoO3)/TiO2催化剂以及改性后的钒基催化剂在中温段具有优异的NOx净化效率和抗SO2中毒性能,其中高分散的V5+物种以及多聚的钒酸盐物种为NH3-SCR反应的活性中心。针对采用不同方法制备的或具有不同组成的钒基催化剂体系,多数学者认为NH3-SCR反应按照Eley-Rideal(E-R)机理进行,部分学者认为按照Langmuir-Hinshelwood(L-H)机理进行,这可能与催化剂的钒负载量以及反应温度区间相关。在后续工作中研究者应结合多种测试手段,具体问题具体分析,综合考虑温度的动态影响以及表面酸碱性对反应物的吸附活化,以得出更为全面、真实的反应机理。系统了解前人在钒基NH3-SCR催化剂领域的研究进展有助于现阶段开发高效稳定、可适应复杂工作条件的钒基SCR催化转化器,同时也对设计合成新型高效、环境友好且抗中毒的非钒基SCR催化剂体系具有一定的参考价值。  相似文献   

14.
随着人们环保意识的增强,氮氧化物(NOx)的危害引起广泛关注.NOx作为首要的大气污染物之一,主要来源于以燃煤电厂为代表的固定源和以机动车为代表的移动源.它不仅能够导致酸雨和光化学烟雾,而且还是PM2.5的重要前驱体,严重危害人类健康和植物生长.因此,NOx的治理迫在眉睫.研究表明,氨选择性催化还原(NH3-SCR)技术是控制固定源NOx排放最经济有效的方法.商业化V2O5-WO3/TiO2和V2O5-MoO3/TiO2脱硝催化剂的最佳工作温度窗口为300?400℃.因此,NH3-SCR脱硝设施通常安装在除尘器和脱硫装置之前以满足最佳工作温度需要.然而,在这种情况下,脱硝催化剂容易因烟气中的飞灰和含硫化合物堵塞、中毒而失活.此外,对于老电厂增加脱硝设施的改造工程,在除尘器和脱硫装置之前没有足够的空间用于安装脱硝设施.因此,开发环境友好型低温NH3-SCR脱硝催化剂显得尤为重要,因为它可以直接安装在除尘器和脱硫装置之后,从而有效减缓脱硝催化剂失活,有利于改造工程的施工.研究表明,锰基催化剂由于其优异的氧化还原性能和氧迁移能力有利于氧化NO为NO2,促进反应沿着"快速NH3-SCR"途径进行,从而表现出优异的低温脱硝性能.然而,其N2选择性、抗水性能和工作温度窗口还有待改善.因此,开发既具有高催化活性又具有宽工作温度窗口、优异抗水性能以及理想N2选择性的低温脱硝催化剂仍是一个富有挑战性的课题.二氧化铈(CeO2)由于具有优异的氧化还原性能、良好的储/释氧能力、丰富的氧空位以及Ce4+/Ce3+的轻易切换而被广泛用于NH3-SCR反应.因此,将锰氧化物(MnOx)与CeO2相结合而制备的MnOx-CeO2催化剂可能会表现出优异的低温脱硝性能.而催化剂的理化性质和催化性能还强烈地依赖于其制备方法.因此,本文采用不同方法(机械混合法、浸渍法、水热法、共沉淀法以及溶胶-凝胶法)制备了一系列MnOx-CeO2催化剂用于低温NH3-SCR反应,并运用X射线衍射(XRD)、拉曼光谱(Raman)、氮气物理吸附、氢气程序升温还原(H2-TPR)、氨气程序升温脱附(NH3-TPD)、X射线光电子能谱(XPS)以及原位漫反射红外光谱(in situ DRIFTS)等表征技术对催化剂进行了系统分析.重点考察了制备方法对MnOx-CeO2催化剂理化性质和催化性能的影响.结果表明,低温脱硝性能有如下顺序:水热法>溶胶-凝胶法>共沉淀法>浸渍法>机械混合法.这与催化剂表面Ce3+和Mn4+含量、氧空位和表面吸附氧物种浓度以及酸量和酸强度顺序一致.这些性质都与MnOx和CeO2之间的电子相互作用(即Mn3++Ce4+?Mn4++Ce3+)密切相关.特别是水热法制备的MnOx-CeO2催化剂(MnCe-HTM)由于Mnn+掺入到CeO2晶格形成铈基固溶体(含Mn-O-Ce结构)以及水热过程中的高温高压环境加强了MnOx和CeO2之间的电子相互作用,从而表现出优异的理化性质、最佳的低温脱硝性能以及理想的抗水性能.  相似文献   

15.
选择性催化还原(SCR)是目前去除氮氧化物最有效的方法之一. V2O5/TiO2催化剂被广泛应用于氨法选择性还原氮氧化物(NH3-SCR)反应,但该催化剂存在工作温度高(300–400oC)及 SO2氧化率高引起设备腐蚀和管路堵塞等问题,开发低温 SCR催化剂具有重要意义.过渡金属氧化物(如 Fe2O3, MnOx和 CuO等)催化剂用于低温SCR先后见诸文献报道,但这些催化剂在 SO2和 H2O存在下易失活.近年来柱撑黏土(PILC)引起科学家广泛关注, Yang等首次将 V2O5/TiO2-PILC催化剂应用于 NH3-SCR反应,发现其催化活性高于传统 V2O5/TiO2催化剂.柱撑黏土基催化剂在 NH3-SCR反应中也显示出良好抗硫性能,但 V2O5/TiO2-PILC催化剂的抗硫机理至今尚未见深入研究.因此我们制备了一系列 V2O5/TiO2-PILC催化剂,采用原位漫反射红外等方法详细研究了其抗硫性能较好的原因.
  首先采用离子交换法制备出 TiO2-PILC载体,之后采用浸渍法制备了不同钒含量(质量分数x/%=0,3,4,5)的xV2O5/TiO2-PILC催化剂.同时,制备了传统 V2O5/TiO2和 V2O5-MoO3/TiO2催化剂作为对比.活性评价结果显示,4V/TiO2-PILC催化剂具有最高的催化活性,其催化性能与传统钒钛催化剂相当.在160oC时, NO转化率可达80%以上.同时,4V/TiO2-PILC催化剂还具有较宽的反应温度窗口,在260–500oC范围内, NO转化率保持在90%以上.向反应体系中加入0.05% SO2和10% H2O后,在低温(160oC以下)时所有催化剂的反应活性都有一定提高,可能是由于 SO2的加入提高了催化剂的表面酸性.继续升高温度,4V/TiO2和4V6Mo/TiO2催化剂活性均明显下降,而4V/TiO2-PILC催化剂的活性则未出现明显下降.原位漫反射红外光谱结果显示, SO2在三种催化剂表面的吸附以表面硫酸盐或亚硫酸盐物种以及离子态 SO42–物种形式存在,而在4V/TiO2-PILC催化剂表面离子态 SO42–物种的量最少. X射线光电子能谱及 O2程序升温脱附结果显示,在4V/TiO2-PILC催化剂上,表面吸附氧(Oads)的量最少.综合上述分析可以得出,在 SO2气氛下,离子态 SO42–物种在 SCR催化剂表面的累积可能是导致其失活的主要原因,而离子态 SO42–物种的形成可能与催化剂表面吸附氧的量有关.  相似文献   

16.
为实现低温(200-250℃) NH_3-SCR烟气脱硝,开发出了一种高分散暴露CeO_2不同晶面的VO_x-MnO_x/CeO_2低温脱硝催化剂。脱硝性能评价实验结果表明,暴露{110}晶面的VO_x-MnO_x/CeO_2-R催化剂在很宽的温度范围内(220-330℃)都保持了95%的脱硝效率。原位漫反射红外分析结果可知,暴露{110}晶面的VO_x-MnO_x/CeO_2-R催化剂表面更易发生NH_3和NO吸附,进而提高NO的转化效率。气态NH_3在VO_x-MnO_x/CeO_2-R催化剂上吸附生成NH_3(L)和NH_4~+(B),该中间体与NO吸附的中间体桥联硝酸盐和双齿硝酸盐反应生成N_2和H_2O,并遵循Langmuir-Hinshelwood机理。  相似文献   

17.
燃煤与生物质燃料进行耦合掺烧是未来降低电力行业碳排放的重要路径之一。稀土脱硝催化剂以其良好的抗碱金属中毒能力,成为未来新型脱硝催化剂的重要发展方向之一。通过引入固体酸WO3和Nb2O5氧化物对CeO2结构及表面性质进行改性,显著提高了催化剂的NH3-SCR反应性能。制备的系列NbOx-WOx/CeO2(NbWCe)涂覆型工业催化剂,在GHSV=30000 h-1的高空速条件下,可实现在250~450℃内NOx的转化率在80%以上,具有较宽的温度操作窗口和超过90%的N2选择性。表征结果表明,尽管WO3物种导致CeO2晶体的长大,降低催化剂的比表面积,但其提供更多的强酸性位,促进催化剂对NH3的吸附及利用,并抑制其非选择性氧化,促使高温区SCR活性明显升高。另一方面,Nb和Ce之间的相互作用促进催化剂表面更多Ce3+和活性氧物种的形成,增强对NO的氧化能力,使低温区SCR反应性能得到显著升高。因此,通过改变催化剂中WO3和Nb2O5的比例,可实现NbWCe催化剂活性温度窗口调控,满足电厂不同的运行工况需求。  相似文献   

18.
商业选择性催化还原(SCR)催化剂成分主要有 V2O5, WO3和 TiO2,但适用温度窗口较窄(300?400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯 TiO2和 ZrO2载体, TiO2-ZrO2具有较高的热稳定性以及较多的酸位,虽然有关 TiO2-ZrO2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对 NH3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同 NH3-SCR脱硝催化剂的起活温度不同.同时, NH3和 NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究 NH3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的 TiO2-ZrO2固溶体,并分步浸渍不同质量比的 WO3和1%V2O5,最终得到一系列1%V2O5-x%WO3/TiO2-ZrO2.然后通过 X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了 WO3和 ZrO2对催化性能的影响以及 V2O5-WO3/TiO2-ZrO2催化剂的反应机理. N2物理吸附结果表明, WO3的添加使得催化剂孔结构的热稳定性有所提高,同时随着 WO3含量增加催化剂的比表面积逐渐减小,但仍高于 V2O5/TiO2-ZrO2催化剂; ZrO2对催化剂比表面积增大效果比较明显.结合 XRD结果表明, WO3能促进金属氧化物在载体上的分散;相比于 V2O5-WO3/TiO2催化剂, ZrO2有利于活性组分的分散负载.比较系列 V2O5-x%WO3/TiO2-ZrO2的氨吸附情况,发现 WO3的添加增加了 Br?nsted酸的稳定性,其中以9%WO3的效果最显著.催化剂氨吸附中间物种(–NH2)的发现,证实了 WO3添加促进了 NH3的活化,有利于脱硝反应的进行. SCR反应结果显示, V2O5-9%WO3/TiO2-ZrO2催化剂在300–450oC时 NOx转化效率最优,并发现 O2的存在促进了 NOx的转化.采用in situ DRIFTS研究了 V2O5-x%WO3/TiO2-ZrO2催化剂脱硝机理,300和350oC时 NH3, NO, NO + O2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为 Lewis酸中心, Br?nsted酸中心的 NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与 NH3相比, NO只能以 NO2的形式弱吸附在催化剂表面.因此,该催化剂遵循 Eley-Ridel脱硝机理.而 V2O5-9%WO3/TiO2-ZrO2催化剂具有相对较高的脱硝效率,因此用来着重研究 NH3-SCR机理.在 NH3吸附过程中, NH3(1204,1602,3156,3264,3347 cm?1)和活性中产物 NH2(1550 cm?1)在催化剂表面的吸附(恒温300oC)是稳定的;随后通入 NO + O2时, NH3吸附过程中的所有吸收峰(包括 NH2)均逐渐减小(NH3吸附态与 NO结合后分解为 N2和 H2O),同时出现 H2O的振动峰,这证明了 V2O5-x%WO3/TiO2-ZrO2催化剂的脱硝反应过程.各类气体吸附情况表明, NO在商业催化剂的吸附状态与 V2O5-x%WO3/TiO2-ZrO2催化剂相同;但 NH3吸附结果表明, Br?nsted酸中心和 Lewis酸中心都是催化剂的活性中心; NO + O2的通入使得催化剂表面的 NH3和 NH4+都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的 NOx脱除路径.通过in situ DRIFTS比较 O2的存在对脱硝反应产生的不同影响来确定 O2的作用.两类催化剂上 O2均参与了 H2O的形成,促进了催化反应的完成;当 O2不存在时, NO的还原受到了极大地抑制,同时也未出现 H2O;两者的脱硝效率大大降低. H2-TPR和 NH3-TPR结果进一步证实 O2的作用主要是氧化 NO及参与催化过程 H2O的形成.  相似文献   

19.
再生方法对V2O5/AC催化剂同时脱硫脱硝活性的影响   总被引:12,自引:0,他引:12  
 考察了水洗再生、Ar热再生和5%NH3-95%Ar还原再生对V2O5/AC催化剂同时脱硫脱硝活性的影响. 结果表明,水洗再生虽然可洗去反应过程中沉积在催化剂表面的含硫物质,但也能将部分活性组分V2O5转化生成的VOSO4洗去,使催化剂的脱硫脱硝活性降低. Ar热再生后催化剂的脱硝活性与新鲜样品相同,但脱硫活性很低. 经5%NH3-95%Ar还原再生后,催化剂的脱硫活性可恢复到新制备时的水平,同时脱硝活性大大提高,这是由于催化剂表面除了原有的脱硝活性位V2O5外,又形成了新的活性位NH+4/NH-2. 还原再生过程产生的SO2与NH3在室温下反应生成固体亚硫酸铵盐,可实现硫的资源化,简化了后续处理工艺.  相似文献   

20.
近年来, NO_x的排放造成了严重的环境污染.氨选择性催化还原技术(NH3-SCR)是目前消除NO_x最有效的手段之一.V_2O_5-WO_3/TiO_2催化剂在300–400°C范围内表现出优异的脱硝性能,因此被广泛用于NH3-SCR反应.然而该催化剂抗碱(土)金属中毒性能较差,且碱(土)金属碱性越强对催化剂的毒害越大(即K Na Ca Mg).已有研究显示,当K_2O质量分数达1%时,催化剂将完全失活,所以对传统的V_2O_5-WO_3/TiO_2催化剂进行改性以提高其抗K中毒性能具有十分重要的意义.最近, CeO_2由于具有优异的氧化还原性能和储/释氧能力,在NH3-SCR反应得到了广泛的关注.研究显示, CeO_2的改性可提高钒基催化剂脱硝活性及抗碱金属中毒性能,这主要是由于CeO_2的掺杂可以有效提高催化剂表面酸性及氧化还原能力. ZrO_2是一种酸碱两性氧化物,常被用作载体或者助剂.研究显示, ZrO_2的引入可以提高催化剂热稳定性,增大比表面积以及提高氧迁移能力.基于此,我们制备了一系列的V_2O_5-WO_3/TiO_2-ZrO_2, V_2O_5-WO_3/TiO_2-CeO_2以及V_2O_5-WO_3/TiO_2-CeO_2-ZrO_2催化剂,以期提高V_2O_5-WO_3/TiO_2催化剂脱硝性能及抗K中毒能力.研究发现, Ce~(4+), Zr~(4+)共掺杂可以有效提高V_2O_5-WO_3/TiO_2催化活性,拓宽反应温度窗口,增强抗K中毒能力.进一步借助X射线衍射、比表面积测定、氨气-程序升温脱附、氢气-程序升温还原和X射线光电子能谱等表征对催化剂进行全面分析.结果显示, Ce~(4+), Zr~(4+)共掺杂对V_2O_5-WO_3/TiO_2催化剂物理化学性质的影响与其脱硝性能及抗K中毒能力有着密不可分的关系.首先, Ce~(4+), Zr~(4+)可以掺杂进入TiO_2晶格,抑制TiO_2晶粒的生长,从而导致比表面积以及总孔体积的增加;比表面积的增加有利于活性物种的分散,而总孔体积的增加有利于反应物分子与催化剂充分接触.其次, Ce~(4+), Zr~(4+)共掺杂可以提高催化剂表面酸性和氧化还原性能,表面酸性的增加有利于催化剂吸附与活化反应物种NH_3,氧化还原性能的提高有利于NO氧化为NO_2,进而通过"快速NH3-SCR"反应提高催化剂活性;同时, Ce~(4+), Zr~(4+)共掺杂还可以有效降低K中毒对表面酸性和氧化还原性能的影响,这主要是由于Ce~(4+)可以与K原子结合形成Ce-O-K物种,而Zr~(4+)的引入可以增加Ce~(4+)的热稳定性,使得更多的Ce~(4+)与K结合,避免了K与活性钒物种结合形成V-O-K物种,使得活性V5+得到了有效的保护.原位红外实验揭示了V_2O_5-WO_3/TiO_2-CeO_2-ZrO_2催化反应遵循L-H机理,且K中毒并未改变其反应机理.最后,该催化剂在H_2O和SO_2存在的条件下仍具有最佳的脱硝性能,因而有望用于实际高K含量的燃煤烟气脱硝.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号