首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Comparison of Lyocell, modal and viscose fibers was performed by means of differential scanning calorimetry, thermogravimetry and scanning electron microscopy. Thermal analysis was performed in air atmosphere. Samples were mercerized (21.3 g 100 mL-1) or submitted to solar radiation (seven months). Solar degraded samples presents a higher thermal stability and are initially less degraded. Furthermore, Lyocell fiber is the most stable under thermal degradation conditions. Heating produces a reduction of the fiber diameter (about 50%). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Zhang  Huihui  Li  Qiao  Edgar  Kevin J.  Yang  Gesheng  Shao  Huili 《Cellulose (London, England)》2021,28(14):9297-9308
Cellulose - A commonly used natural cellulose fiber (flax) and a regenerated cellulose fiber (Lyocell) were used at 20 wt% to reinforce polylactide stereocomplex (sc-PLA) composites. Composites...  相似文献   

3.
Lyocell, modal and viscose fibers were subjected to mercerization or to solar degradation. The ulterior thermal degradation was analyzed by means of differential scanning calorimetry (DSC). Thermal analysis shows wide exothermic processes that began between 250 and 300°C corresponding to the main thermal degradation and are associated to a depolymerization and decomposition of the regenerated cellulose. Thermal degradation was analyzed as a function of concentration and time. Lyocell fiber is the most stable under thermal degradation conditions. Furthermore, mercerized samples are initially more degraded and present a lower thermal stability.  相似文献   

4.
In order to gain an understanding of the process of Lyocell fiber formation, the melting and solidification behaviors, heat capacity and density of cellulose N-methylmorpholine-N-oxide monohydrate (NMMO-MH) solutions were studied by differential scanning calorimetry (DSC) and dilatometry, and the diameter development of Lyocell fibers in the air gap was measured online. It was found that the Lyocell process can be considered as both a melt–spinning process in the air gap and a wet-spinning process in the coagulation bath. Cellulose chains in the solutions hindered the crystallization of NMMO-MH, and the melting point of the solutions decreased with increasing cellulose concentration. The density of cellulose NMMO-MH solutions decreased linearly with increasing temperature in the solid or the liquid state, and it increased with increasing cellulose concentration. The heat capacity of the solutions increased slightly with increasing temperature and concentration. The development of fiber diameter, the velocity gradient, and the gradient of the filaments in the air gap were limited to a short distance from the spinneret orifice. The position at which the velocity and the tensile stress gradient reached their maximum values moved closer to the spinneret orifice with increasing take-up speed.  相似文献   

5.
Additives with functional properties makes the Lyocell process a versatile tool for the creation of new innovative materials beyond the textile sector. Occupying functional groups or active surfaces the additives emphasize the suitability of Lyocell fibers, but simultaneously enhance the complexity of chemical reactions in cellulose/N-methylmorpholine-N-oxide (NMMO) solutions, respectively. Concerning to the concentration acidic ion exchange resins, activated charcoals, carbon black etc. shift the start of decomposition to lower temperatures, decrease the viscosity, enhance the formation of amines as the main degradation products or cause autocatalytic reactions. New routes in stabilization of modified Lyocell solutions applying a polymeric stabilizer system are described. Using calorimetric, UV/VIS, ESR and HPLC analysis the degradation processes and thermal stability of modified Lyocell solutions compared to the unstabilized were studied. Moreover, as kinetic investigations show a distinguished behavior for modified solutions autocatalytic reactions can be suppressed by the stabilizing system. ESR kinetic study of radicals reveals that formation and recombination rates of radical reactions depend on cellulose concentration in Lyocell solutions and additional ingredients.  相似文献   

6.
Considerable growth is expected in the production of man-made cellulose textile fibers, which are commercially produced either via derivatization to form cellulose xanthate (viscose) or via direct dissolution in N-methylmorpholine N-oxide (Lyocell). In the study at hand, cellulosic fibers are spun from a solution in the ionic liquid [DBNH] [OAc] into water, resulting in properties equal or better than Lyocell (tensile strength 37 cN tex?1 or 550 MPa). Spinning stability is explored, and the effects of extrusion velocity, draw ratio, spinneret aspect ratio and bath temperature on mechanical properties and orientation are discussed. With the given set-up, tenacities and moduli are improved with higher draw ratios, while elongation at break, the ratio of wet to dry strength, modulus of resilience and birefringence depend little on draw ratio or extrusion velocity, elastic limit not at all. We find the process robust and simple, with stretching to a draw ratio of 5 effecting most improvement, explained by the orientation of amorphous domains along the fiber axis.  相似文献   

7.
The swelling and dissolution mechanisms of dry, never-dried and re-wetted Lyocell fibers were investigated using mixtures of N-methylmorpholine N-oxide and water with various contents of water (from monohydrate to 24% w/w). A radial dissolution starting from the outer layers was observed. Dissolution kinetics was dependent on the water content, the drying state and the spinning conditions. A buckling of the core of dry fibers was observed during swelling. This phenomenon was attributed to the deformation of the unswollen core to accommodate the contraction of the swollen parts of the fiber. In purely swelling conditions with no dissolution, a huge swelling of a very thin skin layer was observed in the first stage, followed then by a progressive swelling of the inside of the fiber. We postulate that this mechanism arose from the fact that this skin is much less crystalline than the core.  相似文献   

8.
Lyocell fibers were treated with KOH up to 8 M which was demonstrated to distribute homogeneously at the outer zones of fiber cross section compared to NaOH which accesses more deeply but less homogenously. Both NaOH and KOH solutions can be used to lower significantly the fibrillation of lyocell fibers. However, due to intrafibrillar swelling together with deep penetration ability of alkali seen for NaOH treatments results in great fiber tensile strength loss which is not observed for KOH treatments due to its inability to penetrate the fiber completely. The porous structure of fibers was studied by inverse size exclusion chromatography (ISEC) to identify mean pore diameter, total pore area and accessible pore volume (APV). Mean pore diameter of fibers decreased after KOH treatments which did not change after NaOH treatments. Wide angle X-ray diffraction analyses (WAXD) were applied to identify the crystallinity index and crystallite size. In general, fiber properties such as water retention value, carboxyl content using methylene blue sorption method, depth of color measured after dyeing with C.I. Direct Red 81 and weight loss were distinctly different in the ranges up to 2 M, 2-5 M and 5 to 8 M KOH. KOH treatment suggests new possibilities for the pretreatment of lyocell fibers to lower fibrillation while slightly lowering elongation at break without a distinct loss in tensile strength and with less decrease in carboxyl content and weight loss without changing dyeing properties of fibers compared to NaOH treatment.  相似文献   

9.
The Lyocell process is a modern green industrial fiber-making technology, which employs N-methylmorpholine-N-oxide monohydrate (NMMO) to directly dissolve cellulose. One problem in Lyocell processing is the discoloration of the spinning dope due to chemical side reactions. Two different methods were elaborated to isolate chromophores, which are present in minute amounts only, from Lyocell fibers, the first one using hydrogen chloride in alcoholic solution, the second one employing boron trifluoride – acetic acid complex. Several chromophores were unambiguously identified by a combination of analytical techniques and comparison to authentic samples. Carbohydrate condensation products, such as catechols, were shown to dominate in early phases of chromophore formation. In later stages, these initial chromophores undergo further condensation reactions with degradation products of NMMO and NMMO itself, leading to nitrogen-containing heterocycles and quinoid products, among others. The incorporation of nitrogen into the chromophores and thus the participation of the solvent in chromophore formation were proven.  相似文献   

10.
A general procedure was developed for the isolation of residual chromophores in or on cellulosic material, which were hitherto inaccessible to structure elucidation due to their extremely low content in the ppb concentration scale. It is applicable to cellulosic pulp, cellulosic fibers (viscose, Lyocell) and cellulose derivatives (acetate, carbonyl-labeled cellulose) as well. The chromophore identification comprises treatment of the cellulosic material with boron trifluoride – acetic acid complex (BF3*2HOAc) containing sulfite, chromatographic separation of the resulting chromophore-containing mixture, and structure determination of the main constituents by NMR / MS and comparison to authentic samples. Both adsorbed and covalently bound aromatic and quinoid compounds are selectively released by the treatment. Covalent ester, ether and secondary alkyl links between chromophore and cellulose are broken. Two cellulosic example substrates have been analyzed for their chromophore content: Lyocell fibers and non-bleached viscose fibers, and up to eleven chromophores per sample have been identified.  相似文献   

11.
Lyocell is a type of regenerated cellulose. Fibres spun from cellulose solution in N-methylmorpholine-N-oxide hydrate consist of crystalline cellulose II and amorphous cellulose. Lyocell fabrics were treated with aqueous sodium hydroxide solution (NaOH) to study the influence of alkali on optical and structural properties. It was observed that sodium hydroxide treatment causes the density, orientation and crystallinity of lyocell fibre to decrease with increasing sodium hydroxide concentration, a corresponding decrease in tensile strength is also observed. The greatest change in fibre properties occurs between 3.0 and 5.0 mol dm−3 NaOH. This is attributed to the onset of formation of Na-cellulose II at 3.0 mol dm−3 NaOH; a fully formed Na-cellulose II structure is expected above 6.8 mol dm−3 NaOH. Formation of Na-cellulose II causes plasticization of the lyocell fibres as both inter- and intra-molecular hydrogen bonds are broken by these higher sodium hydroxide concentrations.  相似文献   

12.
Thermal cleavage processes of N-methylmorpholine-N-oxide monohydrate (NMMO) were observed in pure NMMO as well as in cellulose/NMMO solutions by ESR at temperatures of the industrial Lyocell process ( approximately 370K). Generated radicals were attributed to the alkylnitroxyl type radicals -CH(2)-NO-CH(3) in NMMO and additional (and dominated) -CH(2)-NO-CH(2)- in cellulose/NMMO solutions. Formation of both radical types formed due to NMMO ring scission is suggested.  相似文献   

13.
Cellulose was dissolved rapidly in a NaOH/thiourea aqueous solution (9.5:4.5 in wt.-%) to prepare a transparent cellulose solution, which was employed, for the first time, to spin a new class of regenerated cellulose fibers by wet spinning. The structure and mechanical properties of the resulting cellulose fibers were characterized, and compared with those of commercially available viscose rayon, cuprammonium rayon and Lyocell fibers. The results from wide angle X-ray diffraction and CP/MAS 13C NMR indicated that the novel cellulose fibers have a structure typical for a family II cellulose and possessed relatively high degrees of crystallinity. Scanning electron microscopy (SEM) and optical microscopy images revealed that the cross-section of the fibers is circular, similar to natural silk. The new fibers have higher molecular weights and better mechanical properties than those of viscose rayon. This low-cost technology is simple, different from the polluting viscose process. The dissolution and regeneration of the cellulose in the NaOH/thiourea aqueous solutions were a physical process and a sol-gel transition rather than a chemical reaction, leading to the smoothness and luster of the fibers. This work provides a potential application in the field of functional fiber manufacturing.  相似文献   

14.
Efficient stabilization of cellulose solutions in NMMO(1) against side reactions and their harmful effects meansprevention of both homolytic and heterolytic side reactions, which is mainlyaccomplished by trapping radicals, formaldehyde, andN-(methylene)iminium ions (5). Whileradical trapping is commonly reflected by the antioxidativeefficiency, the effectivity against heterolyticdegradationin the Lyocell dope can be expressed by the newly introduced termformaldehyde trapping capacity (FTC). Propyl gallate (PG,4), the most widely applied Lyocell stabilizer nowadays, actsas a phenolic antioxidant, and is finally oxidized to a deeply colored, highlyconjugated chromophore (11) via ellagicacid (10). It was demonstrated that 4 is alsoa quencher of formaldehyde and N-(methylene)iminium ions,both in organic solutions of NMMO and in Lyocell dope. The processes of radicaltrapping and scavenging of HCHO/5 are competitive in the caseof propyl gallate. A novel oxa-chromanol derivative, PBD (14),was designed as stabilizer for Lyocell solutions. In analogy to propyl gallate,PBD acts as a scavenger of all three dangerous species, namely HCHO,5 and radicals. Upon oxidation by radical species, PBDreleasesacetaldehyde which acts as a very efficient HCHO trap. Thus, in contrast topropyl gallate, radical trapping and HCHO trapping are not competitive. Boththeantioxidative efficiency and the capacity to trap HCHO and 5are higher for PBD as compared to propyl gallate. In preliminary stabilizertesting, mixtures of PBD and PG proved to be especially effective.  相似文献   

15.
Ultra high strength polyethylene (HSPE) fibers have been successfully photocrosslinked using benzophenone as photoinitiator. The introduction of photoinitiator without disturbing the fiber structure is a difficult problem which was solved by vapor absorption at elevated temperature while keeping the fiber under constant strain. The crosslinked fiber showed no decrease in mechanical properties at room temperature as is the case when fibers are crosslinked by other reported methods such as radiation and chemical crosslinking. The crosslinked fiber showed enhanced high temperature resistance as well as much lower creep rate on prolonged stressing. Photocrosslinking of HSPE fiber is superior to other crosslinking methods reported in the literature.  相似文献   

16.
The influences of temperature, concentration of swelling agents and fiber materials on the fibrillation tendency in various cellulosic fibers in aqueous solutions were investigated in terms of fibrillation stability and fibrillation sensitivities to alkali and heat. The fibrillation stability and the fibrillation sensitivity to swelling agents were evaluated with a critical point of fibrillation (CPFconc.) that is the concentration of the swelling agents where fibrillation begins, and the ratio of initial increase in fibril number to increase in concentration of swelling agent (Ii). The fibrillation sensitivity to heat was estimated with the increase in Ii against temperature. The CPFconc. of lyocell fiber was 16.7 mol/l water in ethanol/water mixture at 25 °C and decreased to 0 mol/l at 80 °C, indicating acceleration of the fibrillation at higher temperatures. The Ii of lyocell was enhanced from 3.50 to 7.57 count l/mol. The CPFconc. increased in the order of viscose > cross-linked lyocell > modal > lyocell while the Ii decreased in the order of viscose < modal < cross-linked lyocell < lyocell at 40 °C. The Ii of lyocell fiber increased to the greatest extent with increase in temperature as compared with the other cellulosic fibers. Lyocell fiber has the lowest fibrillation stability and the highest fibrillation sensitivities to alkali and to heat resulting in the highest fibrillation tendency.  相似文献   

17.
Polyaniline–emeraldine base (EB) fiber with excellent mechanical and electrical properties have been spun from highly concentrated (20% w/w), EB/N‐methyl‐2‐pyrrolidinone (NMP)/2‐methylaziridine (2 MA) solution. These solutions had gelation times, which varied from hours to days depending on the molar ratio of 2 MA to EB tetramer repeating unit in the N‐methyl‐2‐pyrrolidinone (NMP) solvent. To better compare the mechanical and electrical properties, dense films were also prepared by thermal evaporation of less concentrated solution (1% w/w). Both fibers and films were amenable to thermal stretching with maximum draw ratios of 4 : 1 and these stretched samples exhibited the greatest tensile strength overall. Wide‐angle X‐ray diffraction (WAXD) of as‐spun and 4‐times stretched fiber showed a completely amorphous structure. Fiber subjected to heat treatment at 250 °C under N2 flux for 2 h displayed further improvements in mechanical properties because of crosslinking between the polymer chains. Fibers and films were later doped by immersion in a variety of aqueous acid solutions. Room temperature DC conductivities for the doped samples ranged from 6 × 10−4 to 45 S/cm depending on the specific choice of acid. Scanning electron microscopy of fiber samples shows the presence of macrovoid formation during fiber spinning. Continued refinement of the processing parameters and fiber post‐treatment, to enhance chain alignment and increase fiber density, will likely lead to additional improvements in the fiber mechanical and electrical properties. Characterization of emeraldine base (EB) powder, solution, films, and fibers by UV‐Vis, DSC, TGA, and WAXD were also performed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 194–204, 2000  相似文献   

18.
Experiments with stretching moderately concentrated polymer solutions have been carried out. Model experiments were carried out for poly(acrylonitrile) solutions in dimethyl siloxane. Just the choice of concentrated solutions allowed for a clear demonstration of a demixing effect with the formation of two separate phases—an oriented polymer fiber and solvent drops sitting on its surface. An original experimental device for following all subsequent stages in the demixing process was built. It combined two light beams, one transverse to the fiber and a second directed along (inside) the fiber, the latter played the role of an optical line. This gives a unique opportunity to observe processes occurring inside a fiber. The process of demixing starts from the volume phase separation across the whole cross section of a fiber at some critical deformation and the propagation of the front of demixing along the fiber. Then a solvent cylindrical skin appears which transforms into a system of separate droplets. New experimental data are discussed based on a comparison of the current different points of view on the phenomenon of deformation‐induced phase separation: thermodynamic shift of the equilibrium phase transition temperature, growth of stress‐induced concentration fluctuations in two‐component fluids, and mechanically pressing a solvent out from a polymer network. The general belief is that a rather specific (so‐called “beads‐on‐a‐string”) structure of a filament is realized in stretching dilute solutions: beads of a polymer solution connected by oriented polymer bridges forming a single object. The situation in stretching moderately concentrated solutions appears quite different: real phase separation was observed. So, the alternative phenomenon to the formation of the “beads‐on‐a‐string” structure has been experimentally proven. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 559–565  相似文献   

19.
This study investigates the adsorption of (glucurono)arabinoxylan (GAX) on cellulose fibres and the properties thereof. A water-soluble GAX, from barley husks (Hordeum vulgare), was isolated using chlorite delignification and alkaline extraction followed by enzymatic purification. The isolated GAX fraction showed an arabinose to xylose ratio of 0.22 and a weight average molar mass of 20,200 g/mol, as determined by size exclusion chromatography (SEC) in DMSO:H2O. The GAX was adsorbed on cellulose fibres under well controlled conditions, where temperature and initial concentration of GAX proved to be important parameters in controlling the level of adsorption. The adsorption process was also dependent on xylan molecular structure. Carbohydrate analysis on the modified fibres showed a preferential adsorption of low substituted xylans (arabinose to xylose ratio of ∼0.10). During the adsorption process the GAX solution was analyzed using SEC-RI-MALLS in aqueous solvent, which demonstrated a molecular xylan adsorption on cellulose fibres. Additionally, a decrease in light scattering responses, which corresponds to an adsorption of aggregated xylan and/or xylan with a great tendency towards self-association, could be observed during the adsorption process. This was demonstrated by adsorption of GAX on regenerated cellulose fibres (Lyocell), which compared to native fibres possesses a relatively smooth fibre surface. Atomic force microscopy analysis visualised a heterogeneous decoration of the Lyocell fibres with xylan agglomerates. The effect of GAX adsorption on paper strength was also investigated. A GAX modified kraft pulp showed an evident increase in tensile strength, which might be due to a retained fibre–fibre bonding ability for xylan coated fibrils after drying and rewetting.  相似文献   

20.
In the present work Lyocell fibers were subjected to graft copolymerization of poly-N-isopropylacrylamide (pNIPAAm) thermosensitive polymer. The thermal degradation and stability of lyocell/pNIPAAm copolymers gels were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). pNIPAAm/lyocell copolymers are thermally stable and more resistant to temperature than lyocell fibres. Thermal characterization was analyzed as a function of percentage by mass of the pNIPAAm grafted. It has been shown that for pNIPAAm/lyocell copolymers, degradation occurs at higher temperature when increasing the degree of grafting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号