首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Lyocell, modal and viscose fibers were subjected to mercerization or to solar degradation. The ulterior thermal degradation was analyzed by means of differential scanning calorimetry (DSC). Thermal analysis shows wide exothermic processes that began between 250 and 300°C corresponding to the main thermal degradation and are associated to a depolymerization and decomposition of the regenerated cellulose. Thermal degradation was analyzed as a function of concentration and time. Lyocell fiber is the most stable under thermal degradation conditions. Furthermore, mercerized samples are initially more degraded and present a lower thermal stability.  相似文献   

2.
In order to gain an understanding of the process of Lyocell fiber formation, the melting and solidification behaviors, heat capacity and density of cellulose N-methylmorpholine-N-oxide monohydrate (NMMO-MH) solutions were studied by differential scanning calorimetry (DSC) and dilatometry, and the diameter development of Lyocell fibers in the air gap was measured online. It was found that the Lyocell process can be considered as both a melt–spinning process in the air gap and a wet-spinning process in the coagulation bath. Cellulose chains in the solutions hindered the crystallization of NMMO-MH, and the melting point of the solutions decreased with increasing cellulose concentration. The density of cellulose NMMO-MH solutions decreased linearly with increasing temperature in the solid or the liquid state, and it increased with increasing cellulose concentration. The heat capacity of the solutions increased slightly with increasing temperature and concentration. The development of fiber diameter, the velocity gradient, and the gradient of the filaments in the air gap were limited to a short distance from the spinneret orifice. The position at which the velocity and the tensile stress gradient reached their maximum values moved closer to the spinneret orifice with increasing take-up speed.  相似文献   

3.
In the present work Lyocell fibers were subjected to graft copolymerization of poly-N-isopropylacrylamide (pNIPAAm) thermosensitive polymer. The thermal degradation and stability of lyocell/pNIPAAm copolymers gels were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). pNIPAAm/lyocell copolymers are thermally stable and more resistant to temperature than lyocell fibres. Thermal characterization was analyzed as a function of percentage by mass of the pNIPAAm grafted. It has been shown that for pNIPAAm/lyocell copolymers, degradation occurs at higher temperature when increasing the degree of grafting.  相似文献   

4.
Cui  Shiqiang  Zhang  Yang  Liu  Changjun  Lou  Shanhao  Zhang  Yue  Zhang  Yumei  Wang  Huaping 《Cellulose (London, England)》2022,29(2):751-762
Cellulose - In order to research the multi-level structure of Lyocell fiber at different draw ratios and to reveal the limiting factors for preparing the high strength Lyocell fiber, the paper...  相似文献   

5.
This research is focused on the study of the physical, chemical, mechanical, and thermal properties of a newly identified natural stem fiber, Cyperus pangorei. The chemical composition of Cyperus pangorei fibers (CPF) such as cellulose, lignin, ash, moisture, and wax contents was evaluated. Besides these, the fiber density was determined and the apparent diameter was measured using an optical microscope. Further, tensile, thermal, XRD, and FT-IR studies were performed to evaluate the suitability of the fiber as a reinforcement. The surface topography of CPF was analyzed using scanning electron microscopy (SEM). Encouraging properties such as increased stiffness, fiber texture, and higher thermal stability suggest the suitability of CPF as reinforcement in polymer matrices.  相似文献   

6.
Zhang  Huihui  Li  Qiao  Edgar  Kevin J.  Yang  Gesheng  Shao  Huili 《Cellulose (London, England)》2021,28(14):9297-9308
Cellulose - A commonly used natural cellulose fiber (flax) and a regenerated cellulose fiber (Lyocell) were used at 20 wt% to reinforce polylactide stereocomplex (sc-PLA) composites. Composites...  相似文献   

7.
Due to the economic importance of polypropylene (PP) and polyethylene terephthalate (PET), and the large amount of composites made with PP matrix and recycled PET as reinforcing material; an investigation was performed regarding the mechanical and thermal behavior of PP composites containing recycled polyethylene terephthalate fibers (rPET). Interfacial adhesion between the two materials was achieved by adding a compatibilizer, maleic anhydride grafted polypropylene, PP-g-MA. Mechanical behavior was assessed by tensile, flexural, impact and fatigue tests, and thermal behavior by HDT (Heat Deflection Temperature). Fractured surfaces and fiber were investigated by scanning electron microscopy. Multiple regression statistical analysis was performed to interpret interaction effects of the variables. Tensile strength, tensile modulus, flexural strength, flexural modulus and HDT increased after rPET fiber incorporation while strain at break, impact strength and fatigue life decreased. Addition of compatibilizer increased tensile strength, flexural strength and flexural modulus, fatigue life and HDT while tensile modulus, strain at break and impact strength decreased. However, at low fiber content, the impact strength increased, probably due to nucleation effects on PP.  相似文献   

8.
In this work, the influence of fiber content and alkali treatment on the mechanical and thermal properties of Acacia leucophloea fiber-reinforced epoxy composites was studied. Ten composite samples were fabricated by varying fiber content (5, 10, 15, 20, and 25 wt%); both untreated and treated fiber were soaked in a 5% NaOH solution for 45 min by using hand-layup method. The composite reinforced with 20 wt% treated fiber content exhibited better mechanical properties and thermal properties. Fourier transform infrared analysis, morphological analysis by atomic force microscope, and scanning electron microscope of composites were also performed.  相似文献   

9.
Thermoplastic composites reinforced with natural fibers have attracted the attention of many researchers, not only for environmental concerns, but also for economic reasons, recyclability, ease of processing, etc. One promising application is in the automotive industry due to their low cost and weight. This industry is increasingly pressured to produce vehicles that consume less fuel and are less polluting. Therefore, plastics reinforced with fibers are required to produce lighter parts to replace the much more abrasive glass fiber and mineral filled composites. One of the most widely used polymers in the automotive sector for manufacturing interior and exterior vehicle components is talc filled EPDM (ethylene-propylene-diene monomer) toughened polypropylene (PP). In this context, the aim of this study was to assess mechanical and thermal properties of bamboo fiber reinforced recycled talc filled PP/EPDM composites compatibilized with maleic anhydride grafted polypropylene (PP-g-MAH). Composites were prepared, according to a 22 factorial design with center point, in a Haake twin screw extruder with subsequent injection molding. Injected specimens were subjected to tensile, flexural, impact and fatigue testing. Morphological analyses were performed by scanning electron microscopy (SEM), and thermal analyses by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Addition of bamboo fiber significantly increased tensile and bending strength, modulus and fatigue life, and decreased elongation at break and impact strength. On the other hand, addition of the compatibilizer had a positive effect only on tensile and flexural strength, and fatigue life whereas the effect was negative on elongation at break and impact strength. The addition of fiber and compatibilizer did not appreciably affect the matrix melting temperature, but slightly increased crystallization temperature and in some cases the degree of crystallinity.  相似文献   

10.
In the present work, the Coats-Redfern method was used to determine the kinetic parameters and the possible reaction mechanism of the thermal degradation of ultra-high molecular mass polyethene and its composites with fiber monocrystals in static air at three different heating rates − 6, 10 and 16 K min−1. The analysis of the results obtained showed that the thermal degradation process of pure ultra-high molecular mass polyethene corresponded to a diffusion controlled reaction (three-dimentional diffusion, mechanism D3), while its composites with fiber monocrystals degraded by two concurrent mechanisms (diffusion one D3 and A1,F1 mechanism). The fiber monocrystals used increased the thermal stability of the composite materials obtained. The values of the activation energy, frequency factor, the changes of entropy, enthalpy and Gibbs energy for the active complex of the composites were calculated.  相似文献   

11.
Summary Nitrile butadiene rubber (NBR) and NBR/PVC blends were produced using 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ) or not as antioxidant. Controlled ozone degradation was performed in several samples. Thermal, compositional and morphological analysis was performed by means of differential scanning calorimetry, thermogravimetry, chemical analysis and scanning electron microscopy. Thermogravimetry analysis shows four mass loss processes related to plastizicer, complex rubber degradation and metallic oxides and other additives. In NBR (NBR/PVC blends) the onset temperature of the first degradation process varies between 227-231°C (259-262°C) and the apparent activation energy between 26 and 36 kJ mol-1 (36-57 kJ mol-1), the NBR/PVC samples non degraded presents the higher thermal stability.  相似文献   

12.
Sugar palm fiber (SPF) is one of the prospective fibers used to reinforce polymer composites. The aim of this study is to evaluate the physicochemical, thermal, and morphological properties of SPF after alkali and sea water treatments. The chemical constituents group and thermal stability of the SPF were determined using scanning electronic microscopy (SEM) along with energy dispersive X-ray spectroscopy and thermogravimetric analysis (TGA). Fourier transform infrared spectroscopy was carried out to detect the presence of functional groups in untreated and treated SPF. The SEM images after both treatments showed that the external surface of the fiber became clean as a result. However, the sea water treatment affected the fiber properties physically, while the alkali treatment affected it both physically and chemically by dissolving the hemicellulose in the fiber. The TGA results showed that untreated fiber is significantly more stable than treated fiber. In conclusion, the results show that the fiber surface treatment significantly affected the characterization of the fiber.  相似文献   

13.
Thermal insulation and fire protection have been a point of interest and discussion for several decades. Due to its excellent performances, basalt fiber has been widely used in the fields of thermal insulation and fire protection. The morphological structure and thermal stability of continuous basalt fiber were analysed using CH-2 projection microscope, scanning electron microscope (SEM) and thermogravimetry (TG). In order to evaluate the thermal radiation protective performance when exposed to fire environment, the spectral reflectances of nonwoven fabrics with different thicknesses were evaluated by ultraviolet-visible-near infrared (UV–Vis–NIR) spectrophotometer analysis. The jointly analysis of TG and UV–Vis–NIR spectrophotometer revealed that the basalt fiber exhibits good thermal stability, and the nonwoven fabrics present excellent thermal protective performance.  相似文献   

14.
The present study concerns cellulose spinning solutions prepared with the use of the organic solvent N‐methylmorpholine‐N‐oxide (NMMO). These solutions were modified with two types of antibacterial agents: an inorganic agent zirconium‐silver phosphate (Alphasan®) and an organic one Triclosan (Irgasan® DP300). Such spinning solutions allow to obtain antibacterial fibers of the Lyocell type. A nanomodifier, colloidal silica (Ludox SM 30®), was also incorporated into the spinning solutions as an additional component to increase the antibacterial activity of fibers. The effect of the compounds incorporated into the spinning solutions on their rheological and thermal properties was assessed by means of the oscillatory method and differential scanning calorimetry (DSC), respectively. The incorporation of nanosilica exerts a clear influence on the rheological properties of spinning solutions, whereas this effect is negligible in the simultaneous presence of nanosilica and antibacterial agents. The results of thermal measurements show that nanosilica affects the crystallization of the solutions examined. Depending on the type of antibacterial agent, nanosilica brings about either a delay or acceleration of the crystallization of the modified solutions. The effect of nanosilica can be explained in terms of interactions between hydroxyl groups occurring on the surface of silica nanoparticles and NMMO molecules. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Poly(propylene carbonate)/poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PPC/PHBV) blends were prepared via the solution casting method at different proportions. Their thermal characteristics were studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The degradability of the blends was investigated in soil suspension cultivation and in vitro degradation testing. The changes of structure and molecular weight for blends were also studied by 1H nuclear magnetic resonance spectroscopy (1H NMR), scanning electron microscopy (SEM) and gel permeation chromatography (GPC) before and after degradation. Although the PPC/PHBV blends were immiscible, the addition of PHBV could improve the thermal stability of PPC. PHBV was degraded mainly by the action of microbial enzymes in the soil suspension, which biodegraded it more rapidly than PPC in a natural environment. PPC was degraded mainly by chemical hydrolysis and random hydrolytic scission of chains in the PBS solution in vitro, and degradation of PPC was more rapid than that of PHBV in a simulated physiological environment.  相似文献   

16.
In this research, the slag fibers coming from water‐quenched slags by using thermal plasma technology were successfully prepared and introduced into epoxy resin to be microwave absorber. The fiber‐blowing equipment for manufacturing slag fibers through controlling the nozzle angle and vertical distance from the nozzle to the melt outlet was also studied. The spectroscopic characterization of the formation processes of slag fiber was studied by using X‐ray diffraction (XRD), inductively‐coupled plasma (ICP), differential thermal analysis (DTA) and scanning electron microscopy (SEM). Microwave absorbing properties of the slag fibers and thermal plastic resin were investigated by measuring reflection loss in the 2–18 and 18–40 GHz microwave frequency range using the free space method. It was found that the composite specimens of slag fiber and thermal plastic resin had the best microwave absorption due to the reflection losses between from −4 to −8 dB and from −11 to −17 dB at frequencies between 2–18 and 18–40 GHz.  相似文献   

17.
The swelling and dissolution mechanisms of dry, never-dried and re-wetted Lyocell fibers were investigated using mixtures of N-methylmorpholine N-oxide and water with various contents of water (from monohydrate to 24% w/w). A radial dissolution starting from the outer layers was observed. Dissolution kinetics was dependent on the water content, the drying state and the spinning conditions. A buckling of the core of dry fibers was observed during swelling. This phenomenon was attributed to the deformation of the unswollen core to accommodate the contraction of the swollen parts of the fiber. In purely swelling conditions with no dissolution, a huge swelling of a very thin skin layer was observed in the first stage, followed then by a progressive swelling of the inside of the fiber. We postulate that this mechanism arose from the fact that this skin is much less crystalline than the core.  相似文献   

18.
The mechanical properties of fiber molded samples and monofilaments of thermally treated 73/27 4‐hydroxy benzoic acid/2‐hydroxy‐6‐napthoic acid (HBA/HNA) copolyester have been investigated using both tensile tests and flexural three‐point bending tests. The thermal treatment which involves step annealing at temperatures well below the degradation temperature of the 73/27 system has been shown to produce branching and crosslinking in the crystalline regions of these polymers. The flexural strength of the degraded sample decreased up to 10% of the untreated fiber molded sample. In case of tensile strength of a single fiber, the values for the degraded samples are in line with the untreated fiber in the low draw ratio region while a slight decrease in tensile strength was observed in the high draw ratio region. The decrease in flexural and tensile strength appears to result from a small amount of branching and crosslinking reactions which arise uniquely in the orthorhombic phase of the 73/27 HBA/HNA copolyester. The branching and crosslinking would prevent the molecular orientation along flow direction in the molten state. For the fiber molded samples of degraded 73/27 HBA/HNA the destruction of the chain regularity along fiber axis direction was observed by wide‐angle X‐ray diffraction. The 73/27 HBA/HNA copolyester including 1 wt% of a crosslinked oligomer was used to simulate the branching and crosslinking of the degraded 73/27 HBA/HNA copolyester. Plots of tensile strength versus draw ratio were similar for the degraded 73/27 HBA/HNA and a copolyester which included 1 wt% of a crosslinkable oligomer. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
This work was carried out to characterize the changes induced on wool fiber by clay treatment. Technical measurements were studied including Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal degradation analysis (TGA), scanning electron microscopy (SEM), moisture regain measurement (MRM), and tensile strength test (TST). The intensity of major peaks in FTIR spectra of the clay treated sample is in favor of chemical changes of the polypeptide functional groups. DSC results indicated that clay treatment of wool enhances heat and thermal barrier properties of fiber. TGA results stated lower thermal degradation of clay treated wool compared with untreated one. One of the main advantages of clay application on wool could be its positive effect on the moisture absorption of wool.  相似文献   

20.
Considerable growth is expected in the production of man-made cellulose textile fibers, which are commercially produced either via derivatization to form cellulose xanthate (viscose) or via direct dissolution in N-methylmorpholine N-oxide (Lyocell). In the study at hand, cellulosic fibers are spun from a solution in the ionic liquid [DBNH] [OAc] into water, resulting in properties equal or better than Lyocell (tensile strength 37 cN tex?1 or 550 MPa). Spinning stability is explored, and the effects of extrusion velocity, draw ratio, spinneret aspect ratio and bath temperature on mechanical properties and orientation are discussed. With the given set-up, tenacities and moduli are improved with higher draw ratios, while elongation at break, the ratio of wet to dry strength, modulus of resilience and birefringence depend little on draw ratio or extrusion velocity, elastic limit not at all. We find the process robust and simple, with stretching to a draw ratio of 5 effecting most improvement, explained by the orientation of amorphous domains along the fiber axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号