首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using induced cathodic electrodeposition a number of silver chalcogenide thin layer membranes of non-trivial composition have been synthesized and their performance as ion-selective flow-injection potentiometric detectors (FIPDs) for free cyanide has been critically estimated in the context of the stringent requirements for toxic cyanide environmental monitoring. AgSCN/Ag2S, Ag2S, Ag2+δSe, Ag2+δSe1−xTex (0 < δ < 0.25 and x ≈ 0.13), Ag2Se and Ag2Se1−xTex electroplated membranes were selected for the present performance-based comparative study in order to obtain a feedback information about the effect of membrane composition. Both silver selenide and Te-doped silver selenide membranes, irrespective of their stoichiometry with respect to silver, exhibit the lowest detection limit for CN (52 ppb) with linear double-Nernstian response down to 130 ppb. The type of chalcogene anion in the membrane composition proves to exert dominant effect on the general performance characteristics of the newly developed FIPDs. The silver stoichiometry (intrinsic defects factor) and the inclusion of Te-dopant (extrinsic defects factor) have more pronounced effect on the profile of the output signal and exert moderate control on the detectors selectivity and baseline stability. This new generation of CN—ion-selective membranes for FIPDs exhibits high selectivity against the common interferents present in cyanide effluents such as SCN, S2O32−, Cl and do not get poisoned in the presence of S2−. Moreover, their long-term stability and signal reproducibility, which make redundant the regular day-to-day calibration, coupled with the cost-effective technology for membranes preparation and easy re-generation make them attractive candidates for incorporation into automated in-field devices for in situ cyanide toxic species monitoring.  相似文献   

2.
Ag-doped n-type (Bi2Te3)0.9-(Bi2−xAgxSe3)0.1 (x=0-0.4) alloys were prepared by spark plasma sintering and their physical properties evaluated. When at low Ag content (x=0.05), the temperature dependence of the lattice thermal conductivity follows the trend of (Bi2Te3)0.9-(Bi2Se3)0.1; while at higher Ag content, a relatively rapid reduction above 400 K can be observed due possibly to the enhancement of scattering of phonons by the increased defects. The Seebeck coefficient increases with Ag content, with some loss of electrical conductivity, but the maximum dimensionless figure of merit ZT can be obtained to be 0.86 for the alloy with x=0.4 at 505 K, about 0.2 higher than that of the alloy (Bi2Te3)0.9-(Bi2Se3)0.1 without Ag-doping.  相似文献   

3.
LaFe1−xNixO3−δ (x=0.1−1.0) perovskites were synthesized via citrate route. The p(O2)-stability of the perovskite phases LaFe1−xNixO3−δ has been evaluated at 1100 °C based on the results of XRD analysis of powder samples annealed at various p(O2) and quenched to room temperature. The isothermal LaFeO3−δ-“LaNiO3−δ” cross-section of the phase diagram of the La-Fe-Ni-O system has been proposed in the range of oxygen partial pressure −15<log p(O2)/atm≤0.68. The unit cell parameters of orthorhombic perovskites O-LaFe1−xNixO3−δ increase with decrease in p(O2) at fixed composition x. This behavior is explained on the basis of size factor. The decomposition temperatures of rhombohedral phases R-LaFe1−xNixO3−δ for x=0.7, 0.8, 0.9 and 1.0 in air were determined as 1137, 1086, 1060 and 995 °C, respectively.  相似文献   

4.
In this paper, pseudo-binary (Ag0.365Sb0.558Te)x-(Bi0.5Sb1.5Te3)1−x (x=0-1.0) alloys were prepared using spark plasma sintering technique, and the composition-dependent thermoelectric properties were evaluated. Electrical conductivities range from 7.9×104 to 15.6×104 Ω−1 m−1 at temperatures of 507 and 318 K, respectively, being about 3.0 and 8.5 times those of Bi0.5Sb1.5Te3 alloy at the corresponding temperatures. The optimal dimensionless figure of merit (ZT) of the sample with molar fraction x=0.025 reaches 1.1 at 478 K, whereas that of the ternary Bi0.5Sb1.5Te3 alloy is 0.58 near room temperature. The results also reveal that a direct introduction of Ag0.365Sb0.558Te in the Bi-Sb-Te system is much more effective to the property improvement than naturally precipitated Ag0.365Sb0.558Te in the Ag-doped Ag-Bi-Sb-Te system.  相似文献   

5.
We report the synthesis and elementary properties of the Co7Se8−xSx (x=0-8) and Ni7Se8−xSx (x=0-7) solid solutions. Both systems form a NiAs-type structure with metal vacancies. In general, the lattice parameters decrease with increasing x, but in the Ni7Se8−xSx system c increases on going from x=5 to 7. Magnetic susceptibility measurements show that all samples exhibit temperature-independent paramagnetism from 25-250 K. Samples within the Co7Se8−xSx system, as well as Ni7Se8 and Ni7SeS7, were found to be poor metals with resistivities of ∼0.20 and ∼0.06 mΩ cm at 300 K, respectively. The Sommerfeld constant (γ) was determined from specific heat measurements to be ∼13 mJ/molCoK2 and ∼7 mJ/molNiK2 for Co7Se8−xSx and Ni7Se8−xSx, respectively.  相似文献   

6.
The chemical stability of perovskite-type La1−xCaxCrO3−δ (x=0.1, 0.2, 0.3) in high oxygen partial pressure, PO2, was investigated with three methods: thermogravimetry, XRD analysis, and thermodynamic calculation. The second phase, CaCrO4 was observed by XRD analysis on the powder equilibrated in high PO2. Thermogravimetry under fixed temperatures sensitively detected the segregation of the second phase in the form of oxygen incorporation, because oxidation of chromium ion accompanies the segregation. The second phase tended to appear in high PO2 and at low temperature. The single-phase regions of La1−xCaxCrO3−δ obtained from the two experimental methods well agreed with each other. The results of thermodynamic calculation on the assumption of ideality of the solid solution also agreed with the experimental results. These results suggested the sufficient chemical stability of La1−xCaxCrO3−δ in high PO2 concerning the application to an interconnector of high-temperature solid oxide fuel cells; for example, La0.7Ca0.3CrO3−δ is stable at 1273 K in air.  相似文献   

7.
The phases LaxSr2−xFeyRu1−yOδ (x=0.2-0.8; y=0.6-0.9) have been synthesized by solid-state techniques and yield tetragonal structures with I4/mmm symmetry. The oxygen stoichiometry and high-temperature structures have been examined using diffraction techniques and in situ Mössbauer spectroscopy at temperatures up to ∼600°C. Furthermore, new reduced phases that adopt structures with Immm symmetry have been discovered. Unusual coordination numbers have been determined for the most highly reduced samples with square planar coordination evident for the B site cations. The reduced orthorhombic Immm phases were found to readily reoxidize in air to the tetragonal I4/mmm structure at relatively low temperatures of only ∼500°C.  相似文献   

8.
New rare-earth boron-rich compounds with the formula of RE1−xB12Si3.3−δ (RE=Y, Gd-Lu) (0?x?0.5,δ≈0.3) have been synthesized. They belong to a new type of rhombohedral structure with the space group of R-3m (No. 166) and z=9. The lattice constants were measured from powder XRD data. Crystal structure solved from powder XRD data for Tb0.68B12Si3 as a representative has been compared with that of YB17.6Si4.6 (or Y0.68B12Si3.01), whose structure was solved from single-crystal reflection data. The structure model is confirmed by high-resolution transmission microscope analysis. The vibrational modes of the new crystals were measured by Raman spectroscopy. Temperature dependence of magnetic susceptibility which was measured for RE1−xB12Si3.3−δ single crystals by SQUID revealed that they are paramagnetic materials down to 2.0 K.  相似文献   

9.
Surleva AR  Neshkova MT 《Talanta》2008,76(4):914-921
A new flow injection approach to total weak acid-dissociable (WAD) metal–cyanide complexes is proposed, which eliminates the need of a separation step (such as gas diffusion or pervaporation) prior to the detection. The cornerstone of the new methodology is based on the highly selective flow-injection potentiometric detection (FIPD) system that makes use of thin-layer electroplated silver chalcogenide ion-selective membranes of non-trivial composition and surface morphology: Ag2 + δSe1 − xTex and Ag2 + δSe. An inherent feature of the FIP-detectors is their specific response to the sum of simple CN + Zn(CN)42− + Cd(CN)42−. For total WAD cyanide determination, ligand exchange (LE) and a newly developed electrochemical pre-treatment procedure for release of the bound cyanide were used. The LE pre-treatment ensures complete recovery only when the sample does not contain Hg(CN)42−. This limitation is overcome by implementing electrochemical pre-treatment which liberates completely the bound WAD cyanide through cathodic reduction of the complexed metal ions. A complete recovery of toxic WAD cyanide is achieved in the concentration range from 156 μg L−1 up to 13 mg L−1. A three-step protocol for individual and group WAD cyanide speciation is proposed for the first time. The speciation protocol comprises three successive measurements: (i) of non-treated, (ii) LE-exchange pre-treated; (iii) electrochemically pre-treated sample. In the presence of all WAD complexes this procedure provides complete recovery of the total bound cyanide along with its quantitative differentiation into the following groups: (1) Hg(CN)42−; (2) CN + Cd(CN)42− + Zn(CN)42−; (3) Cu(CN)43− + Ni(CN)42− + Ag(CN)2. The presence of a 100-fold excess in total of the following ions: CO32−, SCN, NH4+, SO42− and Cl does not interferes. Thus the proposed approach offers a step ahead to meeting the ever increasing demand for cyanide-species-specific methods. The equipment simplicity makes the procedure a good candidate for implementing in portable devices for in-field cyanide monitoring.  相似文献   

10.
The newly established intermetallic compound LiAg2In crystallizes in the MnCu2Al-type structure (Fm-3m, Heusler phase) with . The homogeneity range of this phase in the ternary Li-Ag-In phase diagram along the adjacent quasibinary cut Li0.25(Ag1−xInx)0.75 was determined by X-ray powder diffraction and extends from x∼0.33, Li0.25Ag0.50In0.25, up to x∼0.44, Li0.25Ag0.42In0.33. The homogeneity ranges of Heusler- and Zintl-type phases in the Li-Ag-In system are separated from each other by a broad heterogeneous region.  相似文献   

11.
Paracrystalline array of defect clusters ca. five times the lattice spacing of the average Co3−δO4 spinel structure occurred more or less in a relaxed manner when the sintered Co1−xO polycrystals were air-quenched below the Co1−xO/Co3−δO4 transition temperature to activate oxy-precipitation of cube-like Co3−δO4 at dislocations. The same paracrystalline spacing was obtained for Co3−δO4 when formed via oxidizing/sintering the Co1−xO powders at 800°C in air, suggesting a nearly constant δ value for Co3−δO4 in the T-PO2 conditions encountered. The extra cobalt vacancies and Co3+ interstitials, as a result of δ value, may form additional 4:1-derived defect clusters for further paracrystalline distribution in the spinel lattice. The nanosize defect clusters self-assembled by columbic interactions and lattice relaxation in ionic crystal may have potential applications as step-wise sensor of oxygen partial pressure at high temperatures.  相似文献   

12.
MgO and Co1−xO powders in 9:1 and 1:9 molar ratio (denoted as M9C1 and M1C9, respectively) were sintered and homogenized at 1600°C followed by annealing at 850°C and 800°C, respectively to form defect clusters and precipitates. Analytical electron microscopic observations indicated the protoxide remained as rock salt structure with complicated planar diffraction contrast for M9C1 sample, however with spinel paracrystal precipitated from the M1C9 sample due to the assembly of charge- and volume-compensating defects of the 4:1 type, i.e., four octahedral vacant sites surrounding one Co3+-filled tetrahedral interstitial site. The spacing of such defect clusters is 4.5 times the lattice spacing of the average spinel structure of Mg-doped Co3−δO4, indicating a higher defect cluster concentration than undoped Co3−δO4. The {111} faulting of Mg-doped Co3−δO4/Co1−xO in the annealed M1C9 sample implies the possible presence of zinc blend-type defect clusters with cation vacancies assembled along oxygen close packed (111) plane.  相似文献   

13.
Zr1−xLnxW2O8−x/2 solid solutions (Ln=Eu, Er, Yb) of different substitution fractions x have been synthesized. Their X-ray diffraction (XRD) patterns have been indexed and lattice parameters calculated based on the α-ZrW2O8 structure. The coefficients of thermal expansion (CTEs) of these solid solutions were estimated to be −10.3×10−6 K−1 in temperature range of 30-100 °C. The solubility of lanthanide ions in these solid solutions decreases linearly with the increase in the radius of substituted lanthanide ions. Based on the concentration dependence of phase transition temperatures, a novel method for determination of solubility of the lanthanide ions in Zr1−xLnxW2O8−x/2 solid solutions has been developed. This method seems to be more sensitive as compared with that based on XRD technique.  相似文献   

14.
A new solid solution system of Al in WC, with the stoichiometry of (W1−xAlx)C (x=0.10, 0.25, 0.50, 0.75, 0.86), has been synthesized by a solid-state reaction between W1−xAlx alloys and carbon at around 1673 K in vacuum. Environment scanning electron microscope, energy-dispersive analysis of X-ray, X-ray photoelectron spectroscopy, and inductively coupled plasma analyses are used to certify the formation of the products. The mechanism of the solid-state reaction is also discussed. (W1−xAlx)C is identified to crystallize in the hexagonal space group P6m2 (No. 187) and belongs to the WC structure type. The atoms of W and Al occupy the same lattice site (1a site) in the cell of (W1−xAlx)C. The cell parameters for each specimen in the phase of W-Al-C are quite close to that of WC, while their densities are far lower than that of WC.  相似文献   

15.
A comparative study on the oxidation and charge compensation in the AxCoO2−δ systems, A=Na (x=0.75, 0.47, 0.36, 0.12) and Li (x=1, 0.49, 0.05), using X-ray absorption spectroscopy at O 1s and Co 2p edges is reported. Both the O 1s and Co 2p XANES results show that upon removal of alkali metal from AxCoO2−δ the valence of cobalt increases more in LixCoO2−δ than in NaxCoO2−δ. In addition, the data of O 1s XANES indicate that charge compensation by oxygen is more pronounced in NaxCoO2−δ than in LixCoO2−δ.  相似文献   

16.
The structure of pseudorhombohedral-type InFe1−xTixO3−x/2 (x=2/3) was refined by Rietveld profile fitting. The crystal is a commensurate member of a series in a solution range on InFeO3-In2Ti2O7 including incommensurate structures. The structure with the unit cell of a=5.9188(1), b=10.1112(2), and c=6.3896(1) Å, β=108.018(2)°, and a space group P21/a is the alternate stacking of an edge-shared InO6 octahedral layer and an Fe/Ti-O plane along c*. Metal sites on the Fe/Ti-O plane are surrounded by four oxygen atoms on the Fe/Ti-O plane and two axial ones. Electric conductivities of the order 10−4 S/cm were observed for the samples at 1000 K, while the oxide ion transport number is almost zero as no electromotive force was detected by an oxygen concentration cell.  相似文献   

17.
M1−xFexS (M = Cd, Zn) nanocrystallites were prepared by pyrolysis and solvothermal decomposition methods using [M(Aftscz)2] and [M(AftsczH)2Cl2] (M = Cd, Zn and AftsczH = monoacetylferrocene thiosemicarbazone) as single source precursors. The M1−xFexS nanocrystallites were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis and UV-Visible spectroscopy. XRD patterns show that the Cd1−xFexS and Zn1−xFexS nanocrystallites prepared by pyrolysis and solvothermal decomposition routes have hexagonal phase. TEM images show presence of spherical and spherical plate-like morphology of M1−xFexS nanoparticles. M1−xFexS nanoparticles obtained by solvothermal decomposition in ethylene glycol are found to be capped with ethylene glycol as evident from IR spectra.  相似文献   

18.
n-Type (Bi2Te3)0.9–(Bi2−xCuxSe3)0.1 (x=0–0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu2.86Te2 precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x0.1) can reduce the lattice thermal conductivity (κL), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi2Se0.3Te2.7 (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies.  相似文献   

19.
Various compositions of solid solutions K3P(Mo1−xWx)12O40 (0?x?1) were prepared using two solid state synthetic routes. The crystallite size was determined by linewidth refinements of X-ray diffraction patterns using the Warren-Averbach method, and the grain size distribution by laser scattering experiments. Optical properties were determined by diffuse reflectance measurements in the UV-visible range. The optical gap Eg was found to increase exponentially from ∼2.5 to ∼3.30 eV with increasing x, and is systematically shifted to a higher energy when the grain size decreases. The relation between Eg and x was analyzed by calculating the HOMO-LUMO gaps of the [P(Mo1−xWx)12O40]3− anions on the basis of tight-binding electronic structure calculations.  相似文献   

20.
In this paper, we investigate the roles of gold catalysts and thermal evaporation method modifications in the growth process of Zn1−xMgxO nanowires. Zn1−xMgxO nanowires are fabricated on silicon substrates with and without using a gold catalyst. Characterizations reveal that Mg acts in a self-catalyst role during the growth process of Zn1−xMgxO nanowires grown on catalyst-free substrate. The optical properties and crystalline quality of the Zn1−xMgxO nanowires are characterized by room temperature photoluminescence (PL) measurements and Raman spectroscopy, respectively. The Raman and PL studies demonstrate that the Zn1−xMgxO nanowires grown using the catalyst-free method have good crystallinity with excellent optical properties and have a larger band-gap in comparison to those grown with the assistance of gold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号