首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Co3−δO4 paracrystal: 3D assembly of nanosize defect clusters in spinel lattice
Authors:Wen-Hsu Lee
Institution:Institute of Materials Science and Engineering, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, ROC
Abstract:Paracrystalline array of defect clusters ca. five times the lattice spacing of the average Co3−δO4 spinel structure occurred more or less in a relaxed manner when the sintered Co1−xO polycrystals were air-quenched below the Co1−xO/Co3−δO4 transition temperature to activate oxy-precipitation of cube-like Co3−δO4 at dislocations. The same paracrystalline spacing was obtained for Co3−δO4 when formed via oxidizing/sintering the Co1−xO powders at 800°C in air, suggesting a nearly constant δ value for Co3−δO4 in the T-PO2 conditions encountered. The extra cobalt vacancies and Co3+ interstitials, as a result of δ value, may form additional 4:1-derived defect clusters for further paracrystalline distribution in the spinel lattice. The nanosize defect clusters self-assembled by columbic interactions and lattice relaxation in ionic crystal may have potential applications as step-wise sensor of oxygen partial pressure at high temperatures.
Keywords:Co3&minus  δO4  Spinel  Defect cluster  Paracrystal  TEM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号