首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catalytic properties of the Mn-Fe-Beta system with Mn contents in the range 0.1–16 wt.% were studied in the selective catalytic reduction (SCR) of NO x with ammonia. The catalyst structure was investigated using IR spectra of adsorbed NO, temperature-programmed reduction with hydrogen (H2-TPR), X-ray diffraction analysis, and ESR. The use of manganese as a promoter substantially increases the activity of iron-containing catalysts in the SCR of NO x with ammonia. At low contents (<2 wt.%), Mn exists in the cation form and the catalytic activity of the Mn-Fe-Beta system does not increase. At a higher content of Mn, clusters MnO x begin to form, which are highly active in the oxidation of NO to NO2 and the low-temperature catalytic activity of the Mn-Fe-Beta system increases. The observed increase in the low-temperature catalytic activity in the process of SCR of NO x with ammonia is related to a change in the reaction route. The MnO x clusters favor the oxidation of NO and the iron cations facilitate the reaction of “fast” SCR.  相似文献   

2.
Catalytic gas-phase abatement of air containing 250 ppm of isopropanol (IPA) was carried out with a novel dielectric barrier discharge (DBD) reactor with the inner catalytic electrode made of sintered metal fibers (SMF). The optimization of the reactor performance was carried out by varying the voltage from 12.5 to 22.5 kV and the frequency in the range 200–275 Hz. The performance was significantly improved by modifying SMF with Mn and Co oxide. Under the experimental conditions used, the MnO x /SMF showed a higher activity towards total oxidation of IPA as compared to CoO x /SMF and SMF electrodes. The complete destruction of 250 ppm of IPA was attained with a specific input energy of ∼235 J/L using the MnO x /SMF catalytic electrode, whereas, the total oxidation was achieved at 760 J/L. The better performance of the MnO x /SMF compared to other catalytic electrodes suggests the formation of short-lived active species on its surface by the in-situ decomposition of ozone.  相似文献   

3.
The oxidation of o‐xylene to phthalic anhydride over Co‐Mn/H3PW12O40@TiO2 was investigated. The experimental results demonstrated that the prepared catalyst effectively catalyzed the oxidation of o‐xylene to phthalic anhydride. Also, the synergistic effect between three metals plays vital roles in this reaction. From a green chemistry point of view, this method is environmentally friendly due to carrying out the oxidation in a fixed‐bed reactor under solvent‐free condition and using molecular oxygen as a green and cheap oxidizing agent. The resulting solid catalysts were characterized by FT‐IR, XRD, XPS, ICP‐OES, FESEM, TEM, EDX, DR‐UV spectroscopy, BET and thermogravimetric analysis. The oxidation of o‐xylene yields four products: o‐tolualdehyde, phthaldialdehyde, phthalide and finally phthalic anhydride as the main product. The reaction conditions for oxidation of o‐xylene were optimized by varying the temperature, weight hourly space velocity and oxygen flow rate (contact time). The optimum weight percentage of phosphotungstic acid (HPW) and Co/Mn for phthalic anhydride production were 15 wt % and 2 wt%, respectively. The best Co/Mn ratio was found to be 10/1. Oxygen flow rate was very important on the phthalic anhydride formation. The optimum conditions for oxidation of o‐xylene were T = 370 °C, WHSV = 0.5 h?1 and oxygen flow rate = 10 mL min?1. Under optimized conditions, a maximum of 88.2% conversion and 75.5% selectivity to phthalic anhydride was achieved with the fresh catalyst. Moreover, reusability of the catalyst was studied and catalytic activity remained unchanged after at least five cycles.  相似文献   

4.
刘阳  李小松  刘景林  石川  朱爱民 《催化学报》2014,35(9):1465-1474
考察了Mn含量和水含量对AgMn/HZSM-5(AgMn/HZ)催化剂上室温O3氧化(OZCO)脱除空气中苯的影响. 研究发现,Mn含量为2.4 wt%的AgMn/HZ催化剂(AgMn/HZ(2.4))具有大的比表面积和高的MnOx分散度,OZCO活性和稳定性最高. 反应后的程序升温脱附结果表明,2.4 wt%的Mn含量能有效抑制苯和甲酸在催化剂上的残留. 当Mn含量≤ 2.4 wt%时,催化剂分解O3的活性在苯氧化过程中占主导;当Mn含量 > 2.4 wt%时,苯的活化起主要作用. 基于AgMn/HZ(2.4)催化剂优越的反应活性和稳定性,进一步研究了湿气流中该催化剂上苯的氧化. 与干气流相比,水汽的加入能显著提高催化剂的反应活性和稳定性,且以0.1-0.2 vol%水含量时最优.  相似文献   

5.
MnOx-SnO2 composite oxides prepared by a redox coprecipitation route were tested in selective catalytic reduction of NO by NH3 at low temperatures. The results showed that the MnOx-SnO2 catalyst with a Mn/(Mn+Sn) molar ratio of 75% exhibited the best performance, on which NO conversion of 100% could be achieved at temperatures of 120–200 °C. The characterization results of N2 adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that the higher surface area, the formation of solid solution between manganese and tin oxides, and the high oxidation state manganese species were responsible for the high catalytic activity of the MnOx-SnO2 catalyst.  相似文献   

6.
The interaction between Cu and Mn has been used to immobilize the Cu single-atom on MnO2 surface by redox-driven hydrolysis. Comprehensive structure and property characterizations demonstrate that the existence of an Cu−Mn interaction on the catalyst surface can effectively restrain the aggregation of Cu single atoms and improve carbon monoxide (CO) oxidation activity. The interaction of forming the Cu−O−Mn entity is beneficial for CO catalytic activity as the migration of reactive oxygen species and the coordination effect of active centers accelerate the reaction. In particular, 3%-Cu1/MnO2 shows an oxygen storage capacity (OSC) value (342.75 μmol/g) more than ten times that of pure MnO2 (27.79 μmol/g) and has high CO catalytic activity (T90%=80 °C), it can maintain CO conversion of 95 % after 15 cycles. This work offers a reliable method for synthesizing Cu single-atom catalysts and deepens understanding of the interaction effect between single transition metal atoms and supports that can improve the catalytic activity of CO oxidation.  相似文献   

7.
Nanosized iron oxides stabilized on the surface of ultradispersed poly(tetrafluoroethylene) (UPTFE) granules were synthesized by the thermal destruction of iron formate in boiling bed of UPTFE on the surface of heated mineral oil. The particle size of nanoparticles (∼6 nm) containing 5, 10, and 16 wt.% Fe depends weakly on the temperature of synthesis and iron to polymer ratio. The metal state is determined by the synthesis conditions. The nanoparticles synthesized at 280 °C consist mainly of the Fe3O4 and Fe2O3 phases. The samples obtained at 320 °C also contain iron(II) oxide. The catalytic properties of the obtained samples were tested in dichlorobutene isomerization. Unlike isomerization on the iron oxide nanoparticles supported on silica gel, reaction over the UPTFE supports proceeds without an induction period. The sample with 10 wt.% Fe containing magnetically ordered γ-Fe2O3 nanoparticles possesses the highest catalytic activity. Fast electron exchange between the iron ions in different oxidation states and high defectiveness of the nanoparticles contribute, most likely, to the catalytic activity. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1383–1390, June, 2005.  相似文献   

8.
Two new symmetrical acetylacetone-based Schiff bases, herein called LA and LB, have been synthesized. The complexes formed by their association with Mn(II) have been evaluated for catalytic alkene epoxidation with H2O2. The catalytic efficiency of Mn(II)/LA and Mn(II)/LB systems were shown to be switched on by ammonium acetate with remarkable effectiveness and selectivity towards epoxides. EPR spectroscopy for Mn(II)/LA shows that the catalytic centre is a mononuclear Mn complex. Additives that allow easier oxidation of Mn(II) to higher oxidation states, i.e. such as acetate and bicarbonate, can promote decisively the catalytic function. Additives that do not allow oxidation of Mn(II) to higher oxidation states, i.e. such as formate and oxalate, inhibit severely the catalytic function. Monocarboxylate ions, i.e. acetate, bicarbonate and formate do not disturb considerably the first coordination sphere of Mn(II). Dicarboxylate additives, i.e. such as oxalate, form strong complex with the Mn(II).Based on the catalytic and EPR data, a double role is suggested for ammonium acetate. This is to promote Mn(II) oxidation, and to function as a dual acid-base system, participating into the catalytic cycle.  相似文献   

9.
Silica-supported manganese oxide catalysts with loadings of 3, 10, 15, and 20 wt % (as MnO2) were characterized with use of X-ray absorption spectroscopy and X-ray diffraction (XRD). The edge positions in the X-ray absorption spectra indicated that the oxidation state for the manganese decreased with increasing metal oxide loading from a value close to that of Mn2O3 (+3) to a value close to that of Mn3O4 (+2(2)/3). The XRD was consistent with these results as the diffractograms for the supported catalysts of higher manganese oxide loading matched those of a Mn3O4 reference. The reactivity of the silica-supported manganese oxide catalysts in acetone oxidation with ozone as an oxidant was studied over the temperature range of 300 to 600 K. Both oxygen and ozone produced mainly CO2 as the product of oxidation, but in the case of ozone the reaction temperature and activation energy were significantly reduced. The effect of metal oxide loading was investigated, and the activity for acetone oxidation was greater for a 10 wt % MnOx/SiO2 catalyst sample compared to a 3 wt % MnOx/SiO2 sample.  相似文献   

10.
Mn–TiO2 catalysts were utilized as an ozonation catalyst for the first time to study the simultaneous catalytic ozonation of Hg0 and NO at low flue gas temperatures. BET, SEM–EDS, XRD, XPS, H2-TPR, NO x -TPD and Hg0-TPD were used to characterize the catalysts. The Mn–TiO2 catalyst, in which the molar content of metal Mn was 60%, exhibited the best catalytic activities of Hg0 and NO oxidation, compared with other Mn–TiO2 catalysts. It was found that within the range of experiment, the catalytic ozonation efficiency of Hg0 and NO was higher than that of ozonation or catalytic oxidation. The results also showed that the presence of NO gas inhibited the catalytic ozonation of elemental mercury, and the inhibition was enhanced with the NO inlet concentration, while few elemental mercury molecules did promote the catalytic ozonation of NO. The addition of H2O vapor promoted the catalytic ozonation of Hg0 and NO. In addition, 0.6Mn–TiO2 catalyst demonstrated a good TOS and cyclic stability. The catalytic ozonation of NO and Hg0 on Mn–TiO2 catalyst likely followed the Langmuir–Hinshelwood mechanism, where the hydroxyl radicals reacted with adjacently adsorbed NO molecules and elemental mercury on catalyst surface.  相似文献   

11.
The Earth‐abundant and inexpensive manganese oxides (MnOx) have emerged as an intriguing type of catalysts for the water oxidation reaction. However, the overall turnover frequencies of MnOx catalysts are still much lower than that of nanostructured IrO2 and RuO2 catalysts. Herein, we demonstrate that doping MnOx polymorphs with gold nanoparticles (AuNPs) can result in a strong enhancement of catalytic activity for the water oxidation reaction. It is observed that, for the first time, the catalytic activity of MnOx/AuNPs catalysts correlates strongly with the initial valence of the Mn centers. By promoting the formation of Mn3+ species, a small amount of AuNPs (<5 %) in α‐MnO2/AuNP catalysts significantly improved the catalytic activity up to 8.2 times in the photochemical and 6 times in the electrochemical system, compared with the activity of pure α‐MnO2.  相似文献   

12.
The composition and structure of M(II) (Mn, Co, Cu) complexes with Schiff bases (L1 = 2-hydroxy-3-methoxybenzaliminopropyl, L2 = 4-hydroxy-3-methoxybenzaliminopropyl) immobilized on Aerosil and their catalytic activity in ozone decomposition were studied. The formation of pseudotetrahedral bisligand complexes M(L1)2 and pseudooctahedral complexes M(L2)2 on the modified surface of Aerosil was confirmed by IR and ESR spectroscopy and by diffuse reflectance spectroscopy (DSR). The catalytic activity of isostructural complexes in ozone decomposition varies in the order Mn > Co > Cu, and M(L2)2 complexes are more active than M(L1)2.  相似文献   

13.
A catalyst based on TiO2 and nanodiamond with a 10 wt % palladium content of the catalyst was synthesized. The effect of the nanodiamond content on the catalytic properties in a reaction of CO oxidation at room temperature and low concentrations of CO (<100 mg/m3) was studied. It was established that, at a nanodiamond content of the catalyst from 7 to 9 wt % and a palladium content of 10 wt %, the rate of CO oxidation reached a maximum, and it was higher by a factor of 2.5 than the rate of CO oxidation on a catalyst based on pure TiO2, which included palladium clusters. With the use of transmission electron microscopy, XRD X-ray diffractometry, and X-ray photoelectron spectroscopy, it was found that the clusters of palladium covered with palladium oxide with an average cluster size of 4 nm were formed on the surface of the TiO2 carrier. It was assumed that the catalyst synthesized is promising for applications in catalytic and photocatalytic air-cleaning systems.  相似文献   

14.
Chromium oxides of loading ranges from 5 to 15 wt. % on γ-alumina were tested. The optimum chromium oxide loading for the catalytic oxidation is 10 wt. %. Catalysts were investigated by BET, Raman spectroscopy and XPS. The formation of crystalline Cr2O3 has a detrimental effect on catalysts in CH2Cl2 oxidation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
将高锰酸钾与活性炭(AC)原位氧化还原制备的活性炭载锰氧化物(MnOx/AC)用作臭氧分解的催化剂. 采用扫描电镜、X射线光电子能谱、X射线衍射、电子自旋共振波谱、拉曼光谱以及程序升温还原研究了设计Mn负载量对负载锰氧化物性质(形貌、氧化态和晶体结构)的影响. 结果表明,Mn负载量由0.44%增至11%,负载锰氧化物在活性炭表面由疏松的地衣状变为堆叠的纳米球状体,负载层的厚度由~180 nm增加至~710 nm,结构由氧化态+2.9到+3.1的低结晶β-MnOOH生长为由氧化态+3.7到+3.8的δ-MnO2结晶. MnOx/AC室温催化分解低浓度臭氧的活性与负载锰氧化物的形貌及含量密切相关. Mn负载量为1.1%的MnOx/AC具有疏松的地衣状形貌,催化分解臭氧的性能最高,Mn负载量为11%的MnOx/AC具有紧密的堆积结构,因而表现出最低的催化臭氧分解活性.  相似文献   

16.
The catalytic reactivity of the high‐spin MnII pyridinophane complexes [(Py2NR2)Mn(H2O)2]2+ (R=H, Me, tBu) toward O2 formation is reported. With small macrocycle N‐substituents (R=H, Me), the complexes catalytically disproportionate H2O2 in aqueous solution; with a bulky substituent (R=tBu), this catalytic reaction is shut down, but the complex becomes active for aqueous electrocatalytic H2O oxidation. Control experiments are in support of a homogeneous molecular catalyst and preliminary mechanistic studies suggest that the catalyst is mononuclear. This ligand‐controlled switch in catalytic reactivity has implications for the design of new manganese‐based water oxidation catalysts.  相似文献   

17.

Abstract  

The Mn(II) dicarboxylate coordination polymers [Mn(μ-terephthalate)(H2O)2] n , [Mn(μ-oxalate)(H2O)2] n , and [Mn(μ-d-(−)-tartrate)] n were prepared in water and characterized by FT-IR spectroscopy and CHN analysis. Particles of the terephthalate catalyst were also synthesized, by reaction of terephthalic acid and MnCl2·4H2O by a sonochemical method. The catalytic potential of these coordination polymers as slow-release sources of catalytically active Mn species was tested in the oxidation of cyclooctene to its epoxide in acetonitrile, using hydrogen peroxide as oxygen source. For the terephthalate species the catalytic activity was found to increase with increasing dielectric constant and dipole moment of the solvent (being highest in acetonitrile), with reaction temperature to a maximum at 60 °C, and with an imidazole co-catalyst (highest activity found for a imidazole-to-catalyst molar ratio of 20:1). Good activity with more than 64% conversion in 24 h was obtained for epoxidation of cyclooctene and cyclohexene, whereas low yields only were obtained from aryl-substituted olefins. Some exo versus endo regioselectivity was found for norbornene.  相似文献   

18.
叶青  高岐  张新荣  徐柏庆 《化学学报》2006,64(8):751-755
研究了纳米Ce1—xMnxO2上乙醇催化氧化发光特性, 重点考察了反应温度和催化剂组成(Ce/Mn比)对发光强度的影响规律. 为研究催化发光机理, 在相近的反应条件下考察了纳米Ce1—xMnxO2上乙醇催化氧化反应的活性和选择性. 结果表明: 催化发光强度与催化反应中生成CH3CHO的产率有很好的顺变关系, 表明CH3CHO是导致C2H5OH分子在纳米Ce1—xMnxO2催化剂上氧化发光的“活性分子”.  相似文献   

19.
The formation and catalytic effect of Mn3O4 spinel nanoparticles on thermal decomposition of ammonium perchlorate (AP) were investigated and compared to two manganese precursors of MnC2O4 · 2H2O and Mn(acac)3. The catalytic effects of two coated precursors on AP thermal decomposition were measured by differential scanning calorimetric (DSC) and thermogravimetric analysis (TG). The MnC2O4 · 2H2O@AP composite showed a decrease in the decomposition temperature of AP from 428.35 to 310.93 °C in one step, whereas for the Mn(acac)3@AP composite, the thermal decomposition was seen in two steps at 288.04 and 323.875 °C. The kinetic triplet of activation energy (Ea), frequency factor (log A) and model of mechanism function [f(α)] of thermal decomposition for pure ammonium perchlorate,MnC2O4 · 2H2O@AP and Mn(acac)3@AP were investigated via two model‐free (FWO, KAS and Starink) and model‐fitting (Starink) methods at different conversions of α (α = 0.05–0.95). Also, the thermodynamic parameters were obtained via activation energy and frequency factor for different concentrations of catalysts.  相似文献   

20.
It was found for the first time that carbon nanotubes are formed during the mechanical treatment of V2O5 powder in the presence of an organic solvent. The carbon content in the V2O5 sample, dispersed in alcohol, varies during milling and amounts to 2.1 wt.%. The unusually large increase in the catalytic activity of mechanically activated V2O5 in the selective oxidation of n-butane and also of benzene and propane is due to the formation of new active centers containing carbon inserted into the V2O5 structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号