首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium dioxide (TiO2) films were fabricated by cosputtering titanium (Ti) target and SiO2 or Si slice with ion-beam-sputtering deposition (IBSD) technique and were postannealed at 450 °C for 6 h. The variations of oxygen bonding, which included high-binding-energy oxygen (HBO), bridging oxygen (BO), low-binding-energy oxygen (LBO), and three chemical states of titanium (Ti4+, Ti3+ and Ti2+) were analyzed by X-ray photoelectron spectroscopy (XPS). The enhancement of HBO and reduction of BO in O 1s spectra as functions of SiO2 or Si amount in cosputtered film imply the formation of Si-O-Ti linkage. Corresponding increase of Ti3+ in Ti 2p spectra further confirmed the property modification of the cosputtered film resulting from the variation of the chemical bonding. An observed correlation between the chemical structure and optical properties, refractive index and extinction coefficient, of the SiO2 or Si cosputtered films demonstrated that the change of chemical bonding in the film results in the modification of optical properties. Furthermore, it was found that the optical properties of the cosputtered films were strongly depended on the cosputtering targets. In case of the Si cosputtered films both the refractive indices and extinction coefficients were reduced after postannealing, however, the opposite trend was observed in SiO2 cosputtered films.  相似文献   

2.
曾凡浩  章晓中 《物理学报》2007,56(1):522-528
用脉冲激光沉积(PLD)的方法在硅单晶基片上制备了Ti90Cr10和Co80Cr20/Ti90Cr10薄膜,用XRD研究了Ti90Cr10薄膜的晶体结构与制备温度的关系,结果表明随着温度升高,薄膜从非晶态逐步向晶态转化,并且计算了Ti90Cr10薄膜的晶粒大小以及晶格常数. 利用透射电镜对Ti90Cr10薄膜进行了表面和截面形貌的表征. 采用纳米压痕仪对Ti90Cr10薄膜的硬度和膜基界面结合力进行了分析,表明薄膜的硬度和膜基结合力随制备条件改变有所变化,制备温度增加,薄膜的硬度和膜基结合力随之增加. 利用Ti90Cr10薄膜作为中间层,用PLD制备了Co80Cr20磁性层,获得了很好的垂直磁化性质,膜厚减小,矫顽力和矩形比有所增加,600℃真空条件下制备的Co80Cr20(8 nm)/Ti90Cr10(14 nm)薄膜的矫顽力为65.25 kA/m,矩形比为0.86,并且讨论了Co80Cr20/Ti90Cr10薄膜的磁化性质.  相似文献   

3.
张旭辉  马斌  张宗芝  金庆原 《中国物理 B》2010,19(10):107504-107504
Thin Mn(2 nm)/Al(2 nm) bilayers serving as buffer layers have been prepared prior to the deposition of MnAl films. The ferromagnetic τ-phase forms in the buffer layers at an optimum substrate temperature. As a template it induces the growth of following MnAl film. Compared with the case of film without buffer layer, the growth of non-ferromagnetic phase is suppressed and the structural and magnetic properties of MnAl film are improved. Weak dipolar inter-grain coupling is revealed in the MnAl film, and the magnetic reversal process is dominated by magnetic moment rotation.  相似文献   

4.
Ferroelectric and dielectric properties of bilayered ferroelectric thin films, SrBi4Ti4O15 grown on Bi4Ti3O12, were investigated. The thin films were annealed at 700°C under oxygen atmosphere. The bilayered thin films were prepared on a Pt(111)/Ti/SiO2/Si substrate by a chemical solution deposition method. The dielectric constant and dielectric loss of the bilayered thin films were 645 and 0.09, respectively, at 100 kHz. The value of remnant polarization (2P r) measured from the ferroelectric thin film capacitors was 60.5 μC/cm2 at electric field of 200 kV/cm. The remnant polarization was reduced by 22% of the initial value after 1010 switching cycles. The results showed that the ferroelectric and dielectric properties of the SrBi4Ti4O15 on Bi4Ti3O12 ferroelectric thin films were better than those of the SrBi4Ti4O15 grown on a Pt-coated Si substrate suggesting that the improved properties may be due to the different nucleation and growth kinetics of SrBi4Ti4O15 on the c-axis-oriented Bi4Ti3O12 layer or on the Pt-coated Si substrate.  相似文献   

5.
The structure and morphology of Si/CaF2/Si(1 1 1) structures have been investigated by X-ray diffraction (XRD, GIXRD) and X-ray photoelectron spectroscopy (XPS). While CaF2 films were grown via molecular beam epitaxy (MBE), Si films on CaF2/Si(1 1 1) are fabricated by surfactant enhanced solid phase epitaxy (SE-SPE). Here Boron was used as a surfactant to obtain semiconductor films of homogeneous thickness. The Si films are entirely relaxed while the CaF2 films have both pseudomorphic and relaxed crystallites. After exposure to ambient conditions, the Si films have a very thin native oxide film. The homogeneous Si film partially prevents the incorporation of impurities at the interface between the Si substrate and CaF2 via migration along residual defects of the CaF2 film.  相似文献   

6.
王少伟  陆卫  王弘  王栋  王民  沈学础 《物理学报》2001,50(12):2461-2465
采用化学溶液分解法(CSD)在Si衬底上制备了Bi2Ti2O7薄膜.X射线双晶衍射和原子力显微镜检测表明,所制备的薄膜主要为Bi2Ti2O7相的多晶材料.同时还研究了AuBi2Ti2O7/n-Si(100)结构的电容电压(C-V)特性,结果表明,在Bi2Ti2O关键词: C-V特性 2Ti2O7薄膜')" href="#">Bi2Ti2O7薄膜 电荷迁移  相似文献   

7.
We present a novel approach for designing new hard magnets by forming stacks of existing binary magnets to enhance the magneto crystalline anisotropy. This is followed by an attempt at reducing the amount of expensive metal in these stacks by replacing it with cheaper metal with similar ionic radius. This strategy is explored using examples of FePt, MnAl and MnGa. In this study a few promising materials are suggested as good candidates for hard magnets: stacked binary FePt2MnGa2 in structure where each magnetic layer is separated by two non‐magnetic layers, FePtMnGa and FePtMnAl in hexagonally distorted Heusler structures and FePt0.5Ti0.5MnAl.  相似文献   

8.
The origin behind crystalline silicon surface passivation by Al2O3 films is studied in detail by means of spatially‐resolved electron energy loss spectroscopy. The bonding configurations of Al and O are studied in as‐deposited and annealed Al2O3 films grown on c‐Si substrates by plasma‐assisted and thermal atomic layer deposition. The results confirm the presence of an interfacial SiO2‐like film and demonstrate changes in the ratio between tetrahedrally and octahedrally coordinated Al in the films after annealing. These observations reveal the underlying origin of c‐Si surface passivation by Al2O3. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.  相似文献   

10.
We report catalyst‐free direct synthesis of vertical graphene nanosheets (VGNs) on SiO2/Si and quartz substrates using microwave electron cyclotron resonance – plasma enhanced chemical vapor deposition. The evolution of VGNs is studied systematically at different growth stages. Raman analysis as a function of growth time reveals that two different disorder‐induced competing mechanisms contributing to the defect band intensity. The VGNs grown on SiO2/Si substrates predominantly consists of both vacancy‐like and hopping defects. On the other hand, the VGNs grown on quartz substrates contain mainly boundary‐like defects. X‐ray photoemission spectroscopy studies also corroborate Raman analysis in terms of defect density and vacancy‐like defects for the VGNs grown on SiO2/Si substrates. Moreover, the grown VGNs exhibit a high optical transmittance from 95% to 78% at 550 nm and the sheet resistance varies from 30 to 2.17 kΩ/sq. depending on growth time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Different photo-assisted techniques were employed for chromium disilicide (CrSi2) semiconductor film fabrication. Flash evaporation of CrSi2 powder on the Si substrate heated to ∼740 K leads to the formation (according to XRD study) of amorphous films. Post-annealing at 920 K leads to the formation of polycrystalline CrSi2 phase. Crystallization is improved by further annealing with 1500 Q-Switched Nd:YAG laser pulses. Optical properties of the as deposited and annealed CrSi2 films have been investigated in the 240-1100 nm spectral range by using spectroscopic ellipsometry. The formation of CrSi2 semiconductor phase was additionally confirmed by the temperature dependence of electrical resistance of the films treated by Q-switched Nd:YAG laser. The band gap for intrinsic conductivity results Eg ≅ 0.2 eV. Backward laser-induced film transfer (LIFT) was also used for CrSi2 film deposition from bulk material on Si substrates. Pulsed CO2 laser was employed for this purpose, because of transparency of silicon at the 10.6 μm wavelength. Measurements of the electrical resistance of the deposited films as a function of temperature showed their semiconductor behavior (Eg = 6 × 10−4 eV). Chromium disilicide films were also deposited by congruent pulsed laser ablation deposition on Si substrates either at room temperature or heated to about 740 K. In this last case the deposit exhibits semiconducting properties with Eg ≅ 0.18 eV.  相似文献   

12.
We report the heteroepitaxial growth of SrTiO3 thin films on Si(001) by hybrid molecular beam epitaxy (hMBE). Here, elemental strontium and the metal‐organic precursor titanium tetraisopropoxide (TTIP) were co‐supplied in the absence of additional oxygen. The carbonization of pristine Si surfaces during native oxide removal was avoided by freshly evaporating Sr into the hMBE reactor prior to loading samples. Nucleation, growth and crystallization behavior as well a structural properties and film surfaces were characterized for a series of 46‐nm‐thick SrTiO3 films grown with varying Sr to TTIP fluxes to study the effect of non‐stoichiometric growth conditions on film lattice parameter and surface morphology. High quality SrTiO3 thin films with epitaxial relationship (001)SrTiO3 || (001)Si and [110]SrTiO3 || [100]Si were demonstrated with an amorphous layer of around 4 nm thickness formed at the SrTiO3/Si interface. The successful growth of high quality SrTiO3 thin films with atomically smooth surfaces using a thin film technique with scalable growth rates provides a promising route towards heterogeneous integration of functional oxides on Si. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
邢钟文 《中国物理 B》2011,20(9):97703-097703
The electric-pulse-induced resistive switching effect is studied for Ti0.85Cr0.15Ox (TCO) films grown on Ir—Si substrates by pulsed laser deposition. Such a TCO device exhibits bipolar switching behaviour with an electric-pulse-induced resistance ratio as large as about 1000% and threshold voltages smaller than 2 V. The resistive switching characteristics may be understood by resistance changes of a Schottky junction composed of a metal and an n-type semiconductor, and its nonvolatility is attributed to the movement of oxygen vacancies near the interface.  相似文献   

14.
YongGang Wang  XiaoYu Ma  LiQun Sun 《Optik》2006,117(10):474-476
Semiconductor saturable absorber mirrors (SESAMs) with GaAs/air interface relaxation region have less non-saturable loss than those with low temperature grown In0.25Ga0.75As relaxation region. A thin layer of SiO2 and a high reflectivity film of Si/(SiO2/Si)4 were coated on the SESAMs, respectively in order to improve the SESAM's threshold for damage. The passively continuous wave mode-locked lasers with two such SESAMs were demonstrated, and the SESAM with high reflectivity film of Si/(SiO2/Si)4 is proved to be helpful for high output power.  相似文献   

15.
In this paper, the structural, elastic, electronic properties of Ru2CrZ (Z=Si, Ge, Pb, Sn) are explored using the generalized gradient approximation based on ab initio plane-wave pseudopotential density functional theory. With the help of the quasi-harmonic Debye model, we also investigate the variation of normalized volume V/V0, the heat capacities CV and CP, thermal expansivity, and Debye temperature of Ru2CrZ (Z=Si, Ge, Pb, Sn). Results show that the Cu2MnAl type structure is more stable then Hg2CuTi type structure. The four compounds in the ground state are predicted to be nearly half-metal behavior with total magnetic moment near to the integer value. To provide a comparative and complementary study to future researches, we investigated the elastic and thermodynamic properties.  相似文献   

16.
The understanding and control of the ilmenite–hematite solid solutions (Fe2−x Ti x Oδ or IH) thin film structure and properties are crucial for spintronics applications. Good quality films of Fe2−x Ti x Oδ on Al2O3(0001) substrates were obtained by pulsed laser deposition. For the studied compositions (x=1, 0.7, 0.5) in a wide oxygen pressure range all the films were epitaxial, with flat interfaces, and without secondary phases. Unconventional lattice strain relaxation with the increase of in-plane lattice parameter above its relaxed bulk value was observed for different film compositions, oxygen pressures, substrate temperatures, and film growth rates. This phenomenon is most likely explained by the buckling of a few first film monolayers because of a significant compressive stress induced on the film by the sapphire substrate. The IH thin films with x=0.7 and 0.5 exhibited the properties of a room temperature magnetic semiconductor. The resistivity changed over three orders of magnitude in the studied pressure range, thus clearly demonstrating the important role of oxygen stoichiometry in the creation of carriers.  相似文献   

17.
It is demonstrated that the application of an ultrathin aluminum oxide (Al2O3) capping film can improve the level of silicon surface passivation obtained by low‐temperature synthesized SiO2 profoundly. For such stacks, a very high level of surface passivation was achieved after annealing, with Seff < 2 cm/s for 3.5 Ω cm n‐type c‐Si. This can be attributed primarily to a low interface defect density (Dit < 1011 eV–1 cm–2). Consequently, the Al2O3 capping layer induced a high level of chemical passivation at the Si/SiO2 interface. Moreover, the stacks showed an exceptional stability during high‐temperature firing processes and therefore provide a low temperature (≤400 °C) alternative to thermally‐grown SiO2. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A Raman frequency upshift of nc-Si phonon mode is observed at room temperature, which is attributed to a strong compressive stress in Si nanocrystals. The 10-period amorphous-Si(3 nm)/amorphous-SiO2 (3 nm) layers are deposited by high vacuum radio-frequency magnetron sputtering on quartz and sapphire substrates at different temperatures. The samples are then annealed in N2 atmosphere at 1100 ℃ for 1 h for Si crystallization. It is demonstrated that the presence of a supporting substrate at the high grown temperature can induce different types of stresses in the Si nanocrystal layers. The strain is attributed to the difference in thermal expansion coefficient between the substrate and the Si/SiO2 SL film. Such a substrate-induced stress indicates a new method to tune the optical and the electronic properties of Si nanocrystals for strained engineering.  相似文献   

19.
The reduction of complementary metal oxide semiconductor dimensions through transistor scaling is in part limited by the SiO2 dielectric layer thickness. Among the materials evaluated as alternative gate dielectrics one of the leading candidate is La2O3 due to its high permittivity and thermodynamic stability. However, during device processing, thermal annealing can promote deleterious interactions between the silicon substrate and the high-k dielectric degrading the desired oxide insulating properties.The possibility to grow poly-SiGe on top of La2O3//Si by laser assisted techniques therefore seems to be very attractive. Low thermal budget techniques such as pulsed laser deposition and crystallization can be a good choice to reduce possible interface modifications due to their localized and limited thermal effect.In this work the laser annealing by ArF excimer laser irradiation of amorphous SiGe grown on La2O3//Si has been analysed theoretically by a numerical model based on the heat conduction differential equation with the aim to control possible modifications at the La2O3//Si interface. Simulations have been carried out using different laser energy densities (0.26-0.58 J/cm2), different La2O3 film thickness (5-20 nm) and a 50 nm, 30 nm thick amorphous SiGe layer. The temperature distributions have been studied in both the two films and substrate, the melting depth and interfaces temperature have been evaluated. The fluences ranges for which the interfaces start to melt have been calculated for the different configurations.Thermal profiles and interfaces melting point have shown to be sensitive to the thickness of the La2O3 film, the thicker the film the lower the temperature at Si interface.Good agreement between theoretical and preliminary experimental data has been found.According to our results the oxide degradation is not expected during the laser crystallization of amorphous Si0.7Ge0.3 for the examined ranges of film thickness and fluences.  相似文献   

20.
Multiferroic and resistive switching properties of single-phase polycrystalline perovskite BiFe0.95Cr0.05O3 (BFCO) thin films grown on Pt/Ti/SiO2/Si substrates by radio-frequency magnetron sputtering were investigated. The BFCO film shows ferroelectric and magnetic properties simultaneously at room temperature, and also exhibits a good piezoelectric property with remanent effective piezoelectric coefficient d 33,f ~55±4 pm/V. An obviously resistive switching behavior was observed in the BFCO thin film at room temperature, which was discussed by the filamentary conduction mechanism associated with the redistribution of oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号