首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
A series of experiments was carried out in a large symmetric compound channel composed of a rough main channel and rough floodplains to investigate the resistance characteristics of inbank and overbank flows. The effective Manning, Darcy–Weisbach, Chezy coefficients and the relative Nikuradse roughness height were analyzed. Many different representative methods for predicting the composite roughness were systematically summarized. Besides the measured data, a vast number of laboratory data and field data for compound channels were collected and used to check the validity of these methods for different subsection divisions including the vertical, horizontal, diagonal and bisectional divisions. The computation showed that these methods resulted in big errors in assessing the composite roughness in compound channels, and the reasons were analyzed in detail. The error magnitude is related to the subsection divisions. The project supported by the Major State Basic Research and Development Program of China (973 Program) (2003CB415202) and the National Natural Science Foundation of China (50579040, 50579041). The English text was polished by Yunming Chen.  相似文献   

2.
the measurements of flow over non-uniform gravel open channel have been conducted with Laser Doppler Velocimetry (LDV). The experimental results indicate that the distribution of mean velocity agrees well with the Nikuradse's law. From the distributions of resistance coefficient, reference level and turbulence intensity, the classification of small scale roughness case is obtained.Project supported by the National Science Foundation of China  相似文献   

3.
This paper presents a 2D analytical solution for the transverse velocity distribution in compound open channels based on the Shiono and Knight method (SKM), in which the secondary flow coefficient (K-value) is introduced to take into account the effect of the secondary flow. The modeling results agree well with the experimental results from the Science and Engineering Research Council-Flood Channel Facility (SERC-FCF). Based on the SERC-FCF, the effects of geography on the secondary flow coefficient and the reason for such effects are analyzed. The modeling results show that the intensity of the secondary flow is related to the geometry of the section of the compound channel, and the sign of the K-value is related to the rotating direction of the secondary flow cell. This study provides a scientific reference to the selection of theK-value.  相似文献   

4.
A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed. As compared with the existing discontinuous Galerkin finite element methods, the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured, whereas the discontinuity of the velocity vector at the discrete time levels still remains. The computational cost is then obviously reduced, particularly, for material non-linear problems. Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed. Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain. The project supported by the National Natural Science Foundation of China (19832010, 50278012, 10272027) and the National Key Basic Research and Development Program (973 Program, 2002CB412709)  相似文献   

5.
The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.  相似文献   

6.
Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors. The project supported by the National Science Fund for Distinguished Scholars (10125210), the Special Funds for Major State Basic Research Project (G1999032801) and the National Natural Science Foundation of China (19772062)  相似文献   

7.
This article presents recent progresses in turbulence modeling in the Unit for Turbulence Simulation in the Department of Engineering Mechanics at Tsinghua University. The main contents include: compact Non-Linear Eddy-Viscosity Model (NLEVM) based on the second-moment closure, near-wall low-Re non-linear eddy-viscosity model and curvature sensitive turbulence model. The models have been validated in a wide range of complex flow test cases and the calculated results show that the present models exhibited overall good performance. The project supported by the National Natural Science Foundation of China (10232020), the National Key Basic Research Special Fund of China (2001CB409600) and the National High-Tech Development Program (2002AA311240)  相似文献   

8.
It has been experimentally researched that convective heat transfer and pressure loss characteristics in rectangular channels with staggered arrays of drop-shaped pin fins in crossflow of air. The effects of arrangements of pin fins on heat transfer and resistance are discussed and the row-by-row variations of the mean Nusselt numbers are presented. By means of the heat/mass transfer analogy and the naphthalene sublimation technique, the heat transfer coefficients on pin fins and on endwall (base plate) of the channel have been achieved respectively. The total mean heat transfer coefficients of pin fin channels are calculated and the resistance coefficients are also investigated. The experimental results show that heat transfer of a channel with drop-shaped pin fins is higher than that with circular pin fins while the resistance of the former is much lower than that of the latter in the Reynolds number range from 900 to 9000. Received on 20 January 1997  相似文献   

9.
This part of the paper presents the current experimental flow boiling heat transfer and CHF data acquired for R134a, R236fa and R245fa in single, horizontal channels of 1.03, 2.20 and 3.04 mm diameters over a range of experimental conditions. The aim of this study is to investigate the effects of channel confinement, heat flux, flow pattern, saturation temperature, subcooling and working fluid properties on the two-phase heat transfer and CHF. Experimentally, it was observed that the flow boiling heat transfer coefficients are a significant function of the type of two-phase flow pattern. Furthermore, the monotonically increasing heat transfer coefficients at higher vapor qualities, corresponding to annular flow, signifies convective boiling as the dominant heat transfer mechanism in these small scale channels. The decreasing heat transfer trend at low vapor qualities in the slug flow (coalescing bubble dominated regime) was indicative of thin film evaporation with intermittent dry patch formation and rewetting at these conditions. The coalescing bubble flow heat transfer data were well predicted by the three-zone model when setting the dryout thickness to the measured surface roughness, indicating for the first time a roughness effect on the flow boiling heat transfer coefficient in this regime. The CHF data acquired during the experimental campaign indicated the influence of saturation temperature, mass velocity, channel confinement and fluid properties on CHF but no influence of inlet subcooling for the conditions tested. When globally comparing the CHF values for R134a in the 0.51-3.04 mm diameter channels, a peak in CHF peak was observed lying in between the 0.79 (Co ≈ 0.99) and 1.03 (Co ≈ 0.78) mm channels. A new CHF correlation has been proposed involving the confinement number, Co that is able to predict CHF for R134a, R236fa and R245fa in single-circular channels, rectangular multichannels and split flow rectangular multichannels. In summary, the present flow boiling and CHF trends point to a macro-to-microscale transition as indicated by the results presented in Ong and Thome (2011) [1].  相似文献   

10.
The effect of convective flow on a spherical crystal growth in the undercooled melt with a moderate far field flow is studied. The asymptotic solution of the evolution of the interface of the spherical crystal growth is obtained by the matched asymptotic expansion method. The analytic result shows that the convective flow in the undercooled melt has a strong effect on the evolution of spherical crystal growth. The convective flow induced by the far field flow makes the interface of the growing spherical crystal enhance its growth velocity in the upstream direction of the far field flow and inhibit growth in the downstream direction, and the interface of the decaying spherical crystal further decay in the upstream direction and inhibit decay in the downstream direction. The maximum growth velocity of the interface of the spherical crystal influenced by the far field flow is obtained.  相似文献   

11.
This paper presents a new simple method of implicit time integration with two control parameters for solving initial-value problems of dynamics such that its accuracy is at least of order two along with the conditional and unconditional stability regions of the parameters. When the control parameters in the method are optimally taken in their regions, the accuracy may be improved to reach of order three. It is found that the new scheme can achieve lower numerical amplitude dissipation and period dispersion than some of the existing methods, e.g. the Newmark method and Zhai’s approach, when the same time step size is used. The region of time step dependent on the parameters in the new scheme is explicitly obtained. Finally, some examples of dynamic problems are given to show the accuracy and efficiency of the proposed scheme applied in dynamic systems. The project supported by the National Key Basic Research and Development Foundation of the Ministry of Science and Technology of China (G2000048702, 2003CB716707), the National Science Fund for Distinguished Young Scholars (10025208), the National Natural Science Foundation of China (Key Program) (10532040), the Research Fund for Oversea Chinese (10228028). The English text was polished by Keren Wang.  相似文献   

12.
In this work we have experimentally measured the apparent wall slip velocity in open channel flow of neutrally buoyant suspension of non-colloidal particles. The free surface velocity profile was measured using the tool of particle imaging velocimetry (PIV) for two different channels made of plane and rough walls. The rough walled channel prevents wall slip, whereas the plane wall showed significant wall slip due to formation of slip layer. By comparing the velocity profiles from these two cases we were able to determine the apparent wall slip velocity. This method allows characterization of wall slip in suspension of large sized particles which cannot be performed in conventional rheometers. Experiments were carried out for concentrated suspensions of various particle volume concentrations and for two different sizes of particles. It was observed that wall slip velocity increases with particle size and concentration but decreases with increase in the viscosity of suspending fluid. The apparent wall slip velocity coefficients are in qualitative agreement with the earlier measurements. The effect of wall slip on free surface corrugation was also studied by analyzing the power spectral density (PSD) of the refracted light from the free surface. Our results indicate that free surface corrugation is a bulk flow response and it does not arise from boundary problem such as development of slip layer.  相似文献   

13.
The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions. The project supported by the National Natural Science Foundation of China (10272067), the Doctoral Program Foundation of the Education Ministry of China (20030422046), the Natural Science Foundation of Shandong Province, China (Y2006A14) and the Research Foundation of Shandong University at Weihai. The English text was polished by Keren Wang.  相似文献   

14.
The retrospective numerical scheme (RNS) is a numerical computation scheme designed for multiple past value problems of the initial value in mathematics and considering the self-memory property of the system in physics. This paper briefly presents the historical background of RNS, elaborates the relation of the scheme with other difference, schemes and other meteorological prediction methods, and introduces the application of RNS to the regional climatic self-memory model, simplified climate model, barotropic model, spectral model, and mesoscale model. At last, the paper sums up and points out the application perspective of the scheme and the direction for the future study. The project supported by the Research Program of the Climatic System Model of China, the National Natural Science Foundation of China (40275031 and 40231006) and the National Key Program for Developing Basic Sciences (1999043408)  相似文献   

15.
Anti-plane shear crack in a functionally gradient piezoelectric material   总被引:6,自引:0,他引:6  
The main objective of this paper is to study the singular nature of the crack-tip stress and electric displacement field in a functionally gradient piezoelectric medium having material coefficients with a discontinuous derivative. The problem is considered for the simplest possible loading and geometry, namely, the anti-plane shear stress and electric displacement in-plane of two bonded half spaces in which the crack is parallel to the interface. It is shown that the square-root singularity of the crack-tip stress field and electric displacement field is unaffected by the discontinuity in the derivative of the material coefficients. The problem is solved for the case of a finite crack and extensive results are given for the stress intensity factors, electric displacement intensity factors, and the energy release rate. Project supported by the National Natural Science Foundation of China (No. 10072041), the National Excellent Young Scholar Fund, of China (No. 10125209) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, P. R. C..  相似文献   

16.
Problems involving coupled multiple space and time scales offer a real challenge for conventional frame-works of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/ molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.  相似文献   

17.
Introduction Meshlessmethodsarenewmethodsofnumericalcomputationwhichhavebeendeveloped rapidlyinrecentyears.Inthesemethods,onlynodesareneeded,meshinformationistotally unnecessary.Thiscanavoidorpartlyavoidthedifficultyofmeshgeneration.Duetohigh accuracyandstability,Galerkinmeshlessmethodsareappliedbroadly,butitisunavoidable tocomputetheintegrationoverthewholephysicaldomaininGalerkinweakform,whichisa greatchallengeforGalerkinmeshlessmethodsbecauseoftheabsenceofmesh.TocarryouttheintegrationinGal…  相似文献   

18.
A hybrid technique of combining moiré measurement and analytical solution is developed to separate the normal and the tangential components of distributed contact stresses between two co-plane bodies. The moiré interferometry offers the displacement fields near the deformed contact zone, from which the tangential strains and boundary slopes of the deformed configurations can be evaluated. Those experimental results provide boundary conditions for the discrete integration of Flamant’s solutions, to inversely compute the separated components of the contact stresses. The project supported by the National Basic Research Program (2007CB935602), the National Natural Science Foundation of China (90607004) and the ICM Fund of CAEP (42105080106).  相似文献   

19.
This paper presents a two-dimensional analytical solution for compound channel flows with vegetated floodplains. The depth-integrated N-S equation is used for analyzing the steady uniform flow. The effects of the vegetation are considered as the drag force item. The secondary currents are also taken into account in the governing equations, and the preliminary estimation of the secondary current intensity coefficient K is discussed. The predicted results for the straight channels and the apex cross-section of meandering channels agree well with experimental data, which shows that the analytical model presented here can be applied to predict the flow in compound channels with vegetated floodplains.  相似文献   

20.
Secondary atomization   总被引:14,自引:0,他引:14  
When a drop is subjected to a surrounding dispersed phase that is moving at an initial relative velocity, aerodynamic forces will cause it to deform and fragment. This is referred to as secondary atomization. In this paper, the abundant literature on secondary atomization experimental methods, breakup morphology, breakup times, fragment size and velocity distributions, and modeling efforts is reviewed and discussed. Focus is placed on experimental and numerical results which clarify the physical processes that lead to breakup. From this, a consistent theory is presented which explains the observed behavior. It is concluded that viscous shear plays little role in the breakup of liquid drops in a gaseous environment. Correlations are given which will be useful to the designer, and a number of areas are highlighted where more work is needed. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号