首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   5篇
力学   3篇
数学   1篇
物理学   11篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
In this paper,we present a direct numerical simulation(DNS) of elastic turbulence of viscoelastic fluid at vanishingly low Reynolds number(Re = 1) in a three-dimensional straight channel flow for the first time,using the Giesekus constitutive model for the fluid.In order to generate and maintain the turbulent fluid motion in the straight channel,a sinusoidal force term is added to the momentum equation,and then the elastic turbulence is numerically realized with an initialized chaotic velocity field and a stretched conformation field.Statistical and structural characteristics of the elastic turbulence therein are analyzed based on the detailed information obtained from the DNS.The fluid mixing enhancement effect of elastic turbulence is also demonstrated for the potential applications of this phenomenon.  相似文献   
2.
成功建立了流体流动阻力和换热性能测试实验台,在45℃的流体温度下,对不同铜粒子体积分数和基液浓度的纳米流体在湍流状态下的对流换热特性和流动阻力进行了实验测量。实验结果表明:黏弹性流体基液中添加纳米粒子后,在降低对应基液减阻率的同时能明显增强传热性能.例如,将1.0%体积分数的铜纳米粒子添加到质量分数为6×10~(-4)的基液中所形成的黏弹性流体基纳米流体其综合性能指数K=0.47,表现了很好的传热强化和减阻性能.  相似文献   
3.
进行了稳定剪切流下稀疏表面活性剂溶液的三维布朗动力学数值模拟.将溶液内部胶束粒子假设为由球体依次线性联结所构成,分别用Lennard-Jones势和软球势来描述不同粒子端部球和内部球相互之间的作用.采用Verlet速度算法进行模拟,得到了不同剪切率下胶束结构和流变特性.在低剪切率下可得到表面活性剂溶液内部的网状胶束结构,该结构在高剪切率下遭到破坏.剪切粘度和第一正应力系数呈剪切稀化特征.揭示了溶液内部结构和流变特性的关系.  相似文献   
4.
采用离散弹性元素.珠簧哑铃模型方程模拟了聚合物减阻流动.模拟出了高分子聚合物浓度的空间分布.得到了减阻率与粘弹性应力,雷诺应力等的定量关系.分析了聚合物湍流结构和离散弹性元素模型中弹性系数的关系.  相似文献   
5.
蔡伟华  李凤臣  张红娜 《中国物理 B》2011,20(12):124702-124702
Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.  相似文献   
6.
黏弹性流体弹性湍流现象是在极低雷诺数下(惯性效应可以忽略),完全由流体弹性引起的复杂湍流现象,在此条件下牛顿流体处于层流流态.该现象不仅具有与惯性湍流类似的一些特征,还具有其独特的特性,此外,其诱发机理与惯性湍流完全不同.为了更深刻地认识弹性湍流特性及其产生机理,本文基于三维Kolmogorov流动采用直接数值模拟研究...  相似文献   
7.
Direct numerical simulations(DNS) were performed for the forced homogeneous isotropic turbulence(FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects.The finite elastic non-linear extensibility-Peterlin model(FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution.Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters,including turbulent kinetic energy spectra,enstrophy and strain,velocity structure function,small-scale intermittency,etc.A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy.It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives.The enstrophy and the strain fields in the FHIT of the polymer solution were remarkably weakened as compared with their Newtonian counterparts.The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution.However,the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution,within the presently simulated range of Weissenberg numbers,had no distinct differences compared with that of the Newtonian fluid case.  相似文献   
8.
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.  相似文献   
9.
添加剂湍流减阻流动与换热研究综述   总被引:2,自引:1,他引:1  
焦利芳  李凤臣 《力学进展》2008,38(3):339-357
添加剂湍流减阻是指在液体的管道湍流中添加少量的高分子聚合物或某种表面活性剂从而使湍流阻力大大降低的现象.从其被发现至今,经过近半个世纪的研究(实验研究、理论分析、数值模拟和实际系统的应用研究),尽管对这一现象及其实际应用价值已有了较为深入的认识,但仍有许多方面尚有欠缺,例如对湍流减阻的机理仍然在探索中. 本文归纳评述了高分子聚合物或表面活性剂添加剂湍流减阻流动与换热现象的研究现状,从湍流减阻剂的特性、减阻剂的湍流减阻机理、湍流减阻发生时的换热机理、减阻流动速度场分布和换热控制等几个方面综述了添加剂湍流减阻流动与换热特性,并综述了湍流减阻剂在实际工业系统中的应用情况,在对添加剂湍流减阻机理、有湍流减阻发生时的对流换热机理等的理解方面进行了新的总结.  相似文献   
10.
证明了林建国等(林建国,谢志华,周俊陶,任意精度的三点紧致显格式及其在CFD中的应用.应用数学和力学,2007,28(7):843-852)提出的紧致显格式与传统的差分格式实质相同,是传统差分格式的另一表达形式,并不具有紧致格式的优点.尽管如此,但这种表达形式更紧凑,推导获得高精度的差分表达式相对于传统的Taylor展开求待定系数的方法也更加简单.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号