首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
中高熵合金是近二十年提出的一种多主元金属合金,打破了传统合金以1-2种金属元素为主元的设计理念.中高熵合金由于多主元的成份设计提高了材料的构型熵和混合熵,展现出许多奇特的组织结构和性能.相比铝合金、钛合金以及钢铁等传统金属,中高熵合金表现出优异的准静态力学性能和动态力学性能等.在高应变速率下,材料的塑性变形受到更多因素的影响,如应变率、温度等.本文首先介绍中高熵合金动态力学性能(包括动态剪切、夏比冲击,动态层裂强度,侵彻自锐性等)的相关研究,并总结了中高熵合金动态变形的微结构变形机理;随后综合概括了中高熵合金中绝热剪切带行为和温度效应的研究现状;最后对中高熵合金在冲击动力学领域的应用和研究趋势提出展望.  相似文献   

2.
高熵合金是近年来提出的一种新的合金设计理念,打破了一般合金中以1种或2种元素为主,辅以极少量其他元素来改善合金性能的传统思想,由多种元素以等原子或近似等原子比混合后形成具有独特原子结构特征的单一固溶体合金.高熵合金的多主元特性使其在变形过程中表现出多重机制(包括位错机制、形变孪生、相变等)的协同,因而高熵合金已经展示了优异的力学性能,如高强、高硬、高塑性、抗高温软化、抗辐照、耐磨等,被认为是最具有应用潜力的新型高性能金属结构材料,已经成为国际固体力学和材料科学领域研究的热点.本文首先介绍了高熵合金独特的结构特征, 即具有短程有序结构和严重的晶格畸变;随后对近年来针对不同类型高熵合金(包括具有面心立方相、体心立方相、密排六方相、多相以及亚稳态高熵合金)力学性能、变形行为方面的研究成果,特别是强韧化机制以及相关的原子尺度模拟, 进行了较为系统的综述;最后强调了高熵合金未来研究中所面临的一些主要问题和挑战,并对其研究进行了展望.   相似文献   

3.
高熵合金是近年来提出的一种新的合金设计理念,打破了一般合金中以1种或2种元素为主,辅以极少量其他元素来改善合金性能的传统思想,由多种元素以等原子或近似等原子比混合后形成具有独特原子结构特征的单一固溶体合金.高熵合金的多主元特性使其在变形过程中表现出多重机制(包括位错机制、形变孪生、相变等)的协同,因而高熵合金已经展示了优异的力学性能,如高强、高硬、高塑性、抗高温软化、抗辐照、耐磨等,被认为是最具有应用潜力的新型高性能金属结构材料,已经成为国际固体力学和材料科学领域研究的热点.本文首先介绍了高熵合金独特的结构特征,即具有短程有序结构和严重的晶格畸变;随后对近年来针对不同类型高熵合金(包括具有面心立方相、体心立方相、密排六方相、多相以及亚稳态高熵合金)力学性能、变形行为方面的研究成果,特别是强韧化机制以及相关的原子尺度模拟,进行了较为系统的综述;最后强调了高熵合金未来研究中所面临的一些主要问题和挑战,并对其研究进行了展望.  相似文献   

4.
为了探究不同应变速率下WFeNiMo高熵合金的变形行为和侵彻性能, 采用万能材料试验机、分离式霍普金森压杆开展了高熵合金的静动态力学性能试验, 讨论了其在不同应变速率下变形特征微观机制. 基于弹道枪试验平台开展了高熵合金与典型钨合金(93W-4.9Ni-2.1Fe,wt%)破片对有限厚钢靶侵彻作用性能试验研究, 分析了两种合金破片侵彻作用过程与靶板破坏特征、侵彻穿孔能量消耗与撞击速度间的关系. 结果表明: 高熵合金、钨合金材料屈服强度与应变率呈正相关, 且在相同的应变率下高熵合金具有更高的屈服强度; 随着应变率的提高, 高熵合金由脆性断裂、韧脆混合的准解理断裂发展至具有黏着特性的破碎变形模式; 高熵合金具有较强的局部绝热变形能力, 在侵彻薄钢靶时体现出较高的剪切敏感性; 相同撞击速度下, 高熵合金破片穿靶消耗的能量低于钨合金破片, 对于薄钢靶具有更强的侵彻穿透能力. 高熵合金具有优异的力学性能和侵彻能力, 在高速撞击薄靶板时除了传统的剪切冲塞作用还具有一定的能量释放特性, 在预制破片上有较好的应用前景.   相似文献   

5.
为了探究不同应变速率下WFeNiMo高熵合金的变形行为和侵彻性能, 采用万能材料试验机、分离式霍普金森压杆开展了高熵合金的静动态力学性能试验, 讨论了其在不同应变速率下变形特征微观机制. 基于弹道枪试验平台开展了高熵合金与典型钨合金(93W-4.9Ni-2.1Fe,wt%)破片对有限厚钢靶侵彻作用性能试验研究, 分析了两种合金破片侵彻作用过程与靶板破坏特征、侵彻穿孔能量消耗与撞击速度间的关系. 结果表明: 高熵合金、钨合金材料屈服强度与应变率呈正相关, 且在相同的应变率下高熵合金具有更高的屈服强度; 随着应变率的提高, 高熵合金由脆性断裂、韧脆混合的准解理断裂发展至具有黏着特性的破碎变形模式; 高熵合金具有较强的局部绝热变形能力, 在侵彻薄钢靶时体现出较高的剪切敏感性; 相同撞击速度下, 高熵合金破片穿靶消耗的能量低于钨合金破片, 对于薄钢靶具有更强的侵彻穿透能力. 高熵合金具有优异的力学性能和侵彻能力, 在高速撞击薄靶板时除了传统的剪切冲塞作用还具有一定的能量释放特性, 在预制破片上有较好的应用前景.  相似文献   

6.
鉴于高熵合金材料(high-entropyalloy,HEA)在高应变率动态响应下呈现不同的破坏模式及力学性能,其潜在机理从宏观角度已不能够完全解释,需从微观角度研究其动态响应过程中的原子结构变化、位错分布变化、演变机理及变形机制,为优化HEA防护材料的加工工艺、制备方法等提供参考。利用分子动力学模拟的方法,设计了[100]、[110]和[111]等3种取向结构的Al0.3CoCrFeNi高熵合金在不同应变率下的压缩、拉伸及冲击试验,分析了动态响应过程中原子结构变化、位错分布变化、演变机理及变形机制。压缩试验中:[110]取向结构的Al0.3CoCrFeNi高熵合金的屈服强度最高,[111]的次之,[100]的最低;[100]取向结构的Al0.3CoCrFeNi高熵合金主要的变形机制为孪晶变形,[110]的为滑移变形,[111]的为位错变形。拉伸试验中:[111]取向结构的Al0.3CoCrFeNi高熵合金的屈服强度最高,[100]的次之,[110]的最低;[100]取向结构Al0.3  相似文献   

7.
高熵合金强韧化理论建模与模拟研究进展   总被引:1,自引:0,他引:1  
高熵合金因其优异的性能受到广泛关注,如高强度、高硬度、高韧性、高耐磨、高耐辐照、高耐腐蚀、高电阻、高耐热等,有望应用于核能、航天航空等重要领域和重大装备。从高熵合金制备、组织结构以及性能表征等方面开展的实验研究表明其独特的性质依赖于高熵合金高熵效应、晶格畸变和扩散迟滞。在微观尺度以及宏观尺度, 理论模型和数值模拟为研究高熵合金微观机理和力学特性提供了一种方法。建立从高熵合金的微观结构与变形机理到宏观独特力学性能的联系是一个多尺度的科学问题。最近,基于实验观察结果,采用多尺度的理论与模拟方法(第一性原理、分子动力学、离散位错动力学、晶体塑性有限元、微结构依赖的理论模型),研究了高熵合金层错能、弹性模量、扩散系数以及相稳定性,揭示了高熵合金变形与强韧化机制。本文综述多尺度计算在高熵合金力学性能和变形行为方面的研究进展,并对高熵合金在原位变形实验、高通量技术以及机器学习方面的研究进行简要展望。  相似文献   

8.
高熵合金因其优异的性能受到广泛关注,如高强度、高硬度、高韧性、高耐磨、高耐辐照、高耐腐蚀、高电阻、高耐热等,有望应用于核能、航天航空等重要领域和重大装备。从高熵合金制备、组织结构以及性能表征等方面开展的实验研究表明其独特的性质依赖于高熵合金高熵效应、晶格畸变和扩散迟滞。在微观尺度以及宏观尺度, 理论模型和数值模拟为研究高熵合金微观机理和力学特性提供了一种方法。建立从高熵合金的微观结构与变形机理到宏观独特力学性能的联系是一个多尺度的科学问题。最近,基于实验观察结果,采用多尺度的理论与模拟方法(第一性原理、分子动力学、离散位错动力学、晶体塑性有限元、微结构依赖的理论模型),研究了高熵合金层错能、弹性模量、扩散系数以及相稳定性,揭示了高熵合金变形与强韧化机制。本文综述多尺度计算在高熵合金力学性能和变形行为方面的研究进展,并对高熵合金在原位变形实验、高通量技术以及机器学习方面的研究进行简要展望。  相似文献   

9.
杜欣  袁福平  熊启林  张波  阚前华  张旭 《力学学报》2022,54(8):2152-2160
高熵合金未来有望应用于航空航天和深海探测等领域, 并且不可避免地会受到极端冲击载荷作用, 甚至会发生层裂. 本文采用分子动力学(MD)方法, 研究了CoCrFeMnNi单晶高熵合金冲击时的冲击波响应、层裂强度以及微观结构演化的取向相关性和冲击速度相关性. 模拟结果表明, 在沿[110]和[111]方向进行冲击时产生了弹塑性双波分离现象, 且随着冲击速度的增加呈现出先增强后减弱的变化趋势, 但在沿[100]方向冲击时未出现双波分离现象. 在冲击过程中, 大量无序结构产生且随冲击速度的增加而增加, 使得层裂强度随冲击速度的增加而减小. 此外, 层裂强度也具有取向相关性. 沿[100]方向冲击时产生了大量体心立方(BCC)中间相, 抑制了层错以及无序结构的产生, 使得[100]方向的层裂强度最高; 层裂初期微孔洞形核区域无序结构含量大小关系的转变, 使得[111]方向的层裂强度在冲击速度较低时(Up≤0.9 km/s)大于[110]方向, 而在冲击速度较大时(Up≥1.2 km/s)略小于[111]方向. 研究成果有望为 CoCrFeMnNi高熵合金在极端冲击条件下的应用提供理论支撑和数据积累.   相似文献   

10.
研究了Ni_(54+x)Mn_(25)Ga_(21-x)(x=0~4)高温形状记忆合金体系中,Ni元素含量对微观结构、马氏体相变特性及准静态压缩强度、塑性与不同预应变条件下记忆特性的影响。研究发现,当Ni含量较低时,合金由单相正方马氏体相组成,高Ni含量合金则呈现由马氏体和面心立方γ相组成的双相组织,每个马氏体集群由四个不同取向的变体组成,变体间存在I型或II型孪生关系。由于马氏体电子浓度和尺寸因素的影响,马氏体相变特征温度随Ni含量增加显著提高。通过添加Ni替代Ga引入γ相可以显著改善合金的压缩强度和塑性,其中Ni_(56)Mn_(25)Ga_(19)合金呈现较优异的力学性能。但合金中γ相含量较多时,形状记忆效应和形状回复率逐渐减弱。因此,进一步优化合金综合性能时需兼顾强度、塑性和形状记忆性能之间的平衡。  相似文献   

11.
高熵合金药型罩射流成型与稳定性   总被引:2,自引:0,他引:2  
鄢阿敏  乔禹  戴兰宏 《力学学报》2022,54(8):2119-2130
近年迅速兴起的多主元高熵合金因其具有很宽的成分-性能调控范围及一系列优异力学性能, 有望替代紫铜成为新一代药型罩材料. 本文基于CrMnFeCoNi五元高熵合金动态力学性能实验和数值模拟, 探索该合金用作药型罩的适用性. 基于分离式霍普金森拉杆和材料试验机研究了高熵合金不同应变率及温度下的力学行为, 获得了高熵合金Johnson-Cook热黏塑性动态本构. 利用流动速度与临界压垮角关系对凝聚性高熵合金射流形成边界进行界定. 结合数值模拟验证了高熵合金射流形成边界的合理性, 并进一步揭示了射流高速拉伸断裂演化规律. 研究表明: 射流断裂时间与材料强度成负相关, 材料动态强度增大, 将会引起射流断裂时间下降. 本工作可为新型高熵合金药型罩结构设计提供参考.   相似文献   

12.
摘要:高熵合金是一种由多种主元元素组成的新型合金。实验研究表明等原子比CrMnFeCoNi高熵合金在低温下具有比室温更高的拉伸强度和断裂韧性。本文针对这一现象,利用分子动力学模拟对平均晶粒尺寸为6 nm的CrMnFeCoNi纳米晶在300、200和77 K下分别进行拉伸模拟。模拟研究揭示了纳米尺度CrMnFeCoNi高熵合金力学行为的温度效应和强韧机理。微结构演化分析表明:低温下,塑性变形阶段,滑移系开动的较少,位错滑移所受的阻力越大,屈服强度和抗拉强度越大;模型破坏时,孔洞缺陷形核较慢,更多孔洞缺陷演化成断口,更多的断口分摊拉伸应变,使得高熵合金纳米晶的低温韧性更好。  相似文献   

13.
采用放电等离子烧结技术在NbTaWMo难熔高熵合金中掺杂Si元素成功制备了NbTaWMoSi0.25难熔高熵合金,研究了物相组成、显微结构和力学性能的变化,并重点对比了25 ~800 ℃的摩擦学性能. 结果表明:NbTaWMo高熵合金由单一的BCC相组成,而NbTaWMoSi0.25合金由BCC相和硅化物两相组成. 在NbTaWMo难熔高熵合金中掺杂Si元素后,高熵合金室温下的屈服强度、抗压强度和断裂应变均有显著的提高. NbTaWMo难熔高熵合金掺杂Si元素后从25 ℃到800 ℃摩擦系数变化较小,但其耐磨性显著改善,其耐磨性的提高主要由于硅化物增强了合金的强度. NbTaWMoSi0.25难熔高熵合金从室温到中温阶段的磨损机制主要为磨粒磨损,而高温阶段的磨损机制主要表现为磨粒磨损和氧化磨损的综合作用. NbTaWMoSi0.25高熵合金在宽温域内具有良好的耐磨性,在高温摩擦学领域具有较大的应用潜力.   相似文献   

14.
针对工业领域对新型高强高耐磨金属材料的需求,制备了(CuMnNi)100-xAlx (x=0, 5, 10, 15)系列高熵铜合金,研究了Al含量对高熵铜合金的物相组成、显微组织、力学性能和摩擦磨损性能的影响. 结果表明:CuMnNi高熵合金仅由面心立方结构(FCC)的高熵固溶体相组成,Al元素的添加对合金基体FCC相产生了强烈的固溶强化作用,并促进了体心立方(BCC)相形成. FCC相具有良好的塑性和韧性,而BCC相具有高强度和高硬度,两者共同作用使(CuMnNi)100-xAlx系列高熵铜合金的强度随Al含量增加而提高,而塑性和韧性不断降低. 其中,(CuMnNi)90Al10高熵铜合金中FCC相和BCC相的含量达到最佳匹配,使其具有优异的综合力学性能. 室温下,得益于优异的力学性能和硬质BCC相良好的抗磨作用,(CuMnNi)90Al10高熵铜合金的耐磨性优于常规耐磨铝青铜C6161,磨粒磨损为其主要磨损机制.   相似文献   

15.
采用INSTRON准静态压缩试验机和分离式霍普金森压杆装置,研究固溶态AM80镁合金在室温准静态和冲击载荷下的变形行为及组织演变。准静态载荷下,流变应力随应变率(3×10-5~4×10-1 s-1)的升高逐渐降低,表现为负应变率敏感性;冲击载荷下,流变应力随应变率(7.00×102~5.20×103 s-1)的升高而升高,呈现出明显的正应变率敏感性。冲击载荷下AM80镁合金的变形机制以基面滑移和孪生为主,大量细小致密的形变孪生以及适量非基面滑移的启动是AM80镁合金在冲击载荷下流变应力明显高于准静态载荷的重要原因。此外,随应变率的升高,AM80镁合金变形的均匀性明显增强,当应变速率升至3.65×103 s-1时,冲击变形所引起的局部绝热温升软化大于应变硬化与应变速率硬化的总和,部分晶粒产生了明显的动态回复,使得孪晶密度和变形均匀性反而降低。  相似文献   

16.
为了开展激光选区熔化(SLM)增材制造钛合金的动态力学性能研究,分别采用热模拟材料试验机、分离式霍普金森压杆装置对激光选区熔化钛合金在不同温度下进行了准静态和动态压缩实验,并基于实验结果拟合Johnson-Cook本构模型,同时对钛合金在高温、高应变率下的力学行为进行了有限元模拟。结果表明,相对于铸造或锻造钛合金,激光选区熔化钛合金具有更细小、均匀的组织,使其屈服强度有明显的提升,且表现出明显的应变率强化效应和热软化效应。有限元模拟结果与实验有着较高的重合度,进一步验证了本构参数的有效性,为扩大激光选区熔化技术及其产品的应用提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号