首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
AlCoCrFeNi高熵合金因其优异的综合力学性能而有望成为新一代高温结构材料,但对其高温摩擦磨损性能的研究还较为少见.本文中应用放电等离子烧结(SPS)技术制备了AlCoCrFeNi高熵合金,研究了其显微组织和力学性能,系统地考察了其在室温至800℃时的摩擦磨损性能.结果表明:应用SPS技术制备的AlCoCrFeNi高熵合金主要由FCC相、无序BCC相和少量有序BCC相组成;呈网格状分布的FCC相使高熵合金具有良好的塑性和韧性,而呈等轴状分布的BCC相赋予了高熵合金优异的强度;高熵合金室温至800℃时的摩擦系数在0.43~0.51之间,磨损率低于10–5mm3/(N·m).室温至中温阶段主要为磨粒磨损,中温至高温阶段的磨损机制为磨粒磨损、黏着磨损和塑性变形综合作用.高温下高熵合金表面形成了一层主要由为Al2O3和Cr2O3组成的氧化物膜,在一定程度上起到抗磨作用.  相似文献   

2.
通过引入碳元素,设计了一种以原位形成的碳化物为增强相的高熵合金Al_(0.2)Co_(1.5)CrFe_(1.2)Ni_(1.5)TiC_(0.4),并采用放电等离子烧结(SPS)技术成功制备了这种高熵合金.采用XRD、SEM、EDS、万能材料试验机和高温摩擦磨损试验机等研究了微观组织、力学性能和室温至800℃下的摩擦学性能.结果表明:Al_(0.2)Co_(1.5)CrFe_(1.2)Ni_(1.5)TiC_(0.4)高熵合金由面心立方(FCC)结构的高熵固溶体基体相和弥散分布的TiC陶瓷相组成.FCC相使高熵合金具有良好的塑性和韧性,而TiC增强相赋予了高熵合金高的硬度和强度.随着温度的升高,高熵合金的摩擦系数和磨损率均具有逐渐减小的趋势.在800℃时,鉴于摩擦氧化作用,在磨损表面形成了致密的氧化物釉质层,起到了良好的减摩抗磨作用,使高熵合金表现出了优异的高温摩擦学性能.  相似文献   

3.
采用激光熔覆技术成功制备了CoCrFeNiNbx (x=0, 0.25, 0.5, 0.75, 1.0)高熵合金涂层,研究了Nb元素对高熵合金涂层微观组织和显微硬度的影响,分析了CoCrFeNiNb0.75涂层在25~800 ℃的摩擦磨损性能和机制. 结果表明:CoCrFeNiNbx高熵合金涂层主要由FCC (面心立方)相与具有HCP晶格结构的Laves相组成. 随着Nb摩尔含量的增加,CoCrFeNiNbx的微观组织由单一的胞状晶FCC固溶体相(x=0)向亚共晶组织(x=0.25)、共晶组织(x=0.5)和过共晶组织(x=0.75,1.0)逐步发生演变. CoCrFeNiNb0.75涂层具有最高的平均硬度(574 HV),表明适量的Nb元素的掺杂能有效提高涂层的显微硬度,这是固溶强化、第二相强化以及层片共晶组织中产生的大量新界面阻碍位错运动的边界强化相互作用的结果. CoCrFeNiNb0.75涂层在室温下的磨损机制主要为氧化磨损和轻微的磨粒磨损,而在400和800 ℃下均为氧化磨损. 在800 ℃时,磨损表面形成了致密的氧化物釉质层,起到了良好的减摩抗磨作用,使高熵合金在高温环境下表现出了优异的摩擦磨损性能.   相似文献   

4.
采用放电等离子烧结技术在NbTaWMo难熔高熵合金中掺杂Si元素成功制备了NbTaWMoSi0.25难熔高熵合金,研究了物相组成、显微结构和力学性能的变化,并重点对比了25 ~800 ℃的摩擦学性能. 结果表明:NbTaWMo高熵合金由单一的BCC相组成,而NbTaWMoSi0.25合金由BCC相和硅化物两相组成. 在NbTaWMo难熔高熵合金中掺杂Si元素后,高熵合金室温下的屈服强度、抗压强度和断裂应变均有显著的提高. NbTaWMo难熔高熵合金掺杂Si元素后从25 ℃到800 ℃摩擦系数变化较小,但其耐磨性显著改善,其耐磨性的提高主要由于硅化物增强了合金的强度. NbTaWMoSi0.25难熔高熵合金从室温到中温阶段的磨损机制主要为磨粒磨损,而高温阶段的磨损机制主要表现为磨粒磨损和氧化磨损的综合作用. NbTaWMoSi0.25高熵合金在宽温域内具有良好的耐磨性,在高温摩擦学领域具有较大的应用潜力.   相似文献   

5.
采用真空电弧熔炼技术制备了CoCrFeNiWx(x=0.25、0.5、0.75及1.0)系列高熵合金,研究了W元素含量对合金晶体结构、显微组织、力学性能以及室温与900℃摩擦学性能的影响.结果表明:合金中W含量较低时形成单相面心立方(FCC)固溶体,W含量较高时会促进金属间化合物μ相的形成,随着W含量提升,合金显微组织由FCC胞状树枝晶(x=0.25)转变为FCC树枝晶及晶间层片状(FCC+μ)共晶组织(x=0.5、0.75),最后转变为FCC基体上分布的粗大树枝状μ相(x=1.0).由于W元素的固溶强化及原位生成金属间化合物μ相的第二相强化作用,使合金的强度和硬度等力学性能显著增加的同时塑性降低.在试验载荷为10 N,滑动速度0.3 m/s的测试条件下,CoCrFeNiWx系列高熵合金与Si3N4陶瓷球配副时的球-盘摩擦试验结果表明:W元素的添加显著改善了合金的室温耐磨性,但对摩擦系数的影响较小;而900℃摩擦时,摩擦表面形成的多元复合氧化物摩擦釉质层具有良好的减摩抗磨作用,特别是W元素氧化产生的...  相似文献   

6.
采用真空感应熔炼技术制备了CoCrFeMoNiCx (x=0、1、2、3、4和5)系列中熵合金,研究了C元素的掺杂及其含量对合金微观组织、力学性能和摩擦学性能的影响. 结果表明:CoCrFeMoNiCx系列中熵合金主要由体心立方(BCC)相组成;C原子间隙固溶于BCC相,增大了合金的晶格常数,在XRD谱图中表现为衍射峰随着C含量的增加向小角度方向偏移;当C的质量分数大于2%时,BCC晶粒中有少量条状碳化物形成;随着C含量的增加,合金的硬度、强度和断裂韧性等力学性能显著提高,主要归因于C原子的间隙固溶强化效应和少量条状碳化物的出现. 与此同时,合金的磨损率持续降低,表现出良好的耐磨损性能. 室温下的磨损机制为磨粒磨损、塑性变形和疲劳磨损.   相似文献   

7.
采用放电等离子烧结(SPS)制备不同Al含量的Al_xFeCrNiCoCu(x=0,1,2,3)高熵合金涂层.通过XRD、SEM和冲蚀磨损等检测方法,研究了Al含量对该高熵合金涂层的组织及冲蚀磨损性能的影响.结果表明:FeCrNiCoCu高熵合金的微观组织主要为简单FCC结构的富Cu相及富Al相.随着Al元素增加,涂层的微观结构出现由FCC向BCC的转变.同时,涂层的硬度、耐冲蚀性也显著提高.随着冲蚀角度的增加,涂层的冲蚀磨损量逐渐增加,表现出脆性材料的冲蚀磨损特性.在冲蚀角度为90°时,随着Al元素的增加,涂层的主要冲蚀磨损机理逐渐由微切削和锻造挤压转变为犁削.  相似文献   

8.
使用真空电弧熔炼技术制备了Al0.2Co1.5CrNi1.5Ti0.5Mox(x=0.0, 0.1, 0.2, 0.3, 0.4)高熵合金,研究了Mo含量对该高熵合金组织结构、力学性能和摩擦学性能的影响规律及其作用机制. Al0.2Co1.5CrNi1.5Ti0.5高熵合金由FCC相和有序AlNi3相组成,Mo元素添加后促进形成σ相.较大原子半径的Mo元素引发的晶格畸变效应和σ硬质相析出引起的第二相强化效应赋予高熵合金优良的力学和摩擦学性能.随着Mo含量的提高,合金的硬度增加了40.4%,屈服强度增加了32.1%.对该合金的摩擦磨损性能进行研究,发现Mo元素的添加显著改善了高熵合金的摩擦学性能,尤其是当Mo的摩尔比为0.4时,高熵合金室温磨损率为2.62×10-6 mm3/(N·m),800℃时的磨损率为6.23×10  相似文献   

9.
采用真空电弧熔炼技术制备了NiAlCoCrFeTi (HESA-1)和NiAlCoCrFeTiTaMoW (HESA-2)这2种典型的高熵高温合金,研究了其微观组织、力学性能和25~900℃的摩擦学性能.结果表明:2种合金均由无序面心立方晶格(FCC)结构的γ相和有序FCC结构的γ’相组成;γ相使该合金具有良好的塑性和韧性,γ’相赋予其较高的强度和硬度. 25~900℃,2种合金的摩擦系数和磨损率均随温度的升高而呈下降趋势. 25℃时,磨损机制主要为磨粒磨损,摩擦系数较大且磨损率较高. 400℃以上时,在摩擦氧化和热氧化的作用下,磨痕表面开始形成1层不连续的氧化物釉质层,摩擦系数和磨损率均有所降低.当温度达到900℃时,磨痕表面上形成了1层光滑且致密的氧化物釉质层,该釉质层具有良好的减摩抗磨作用,使HESA-1和HESA-2这2种合金的摩擦系数分别降至0.26和0.25,磨损率分别降至13.3×10-6和8.0×10-6 mm3/(N·m).在高温摩擦过程中,合金表面的Al、Cr、Ni和Co等元素在摩擦热和环境热的共同作...  相似文献   

10.
采用SRV-Ⅳ型微动摩擦磨损试验机对近单一面心立方(FCC)相AlCoCrFeNi高熵合金及其抛丸试样在常温下的摩擦磨损性能和行为进行了较详细的考察. AlCoCrFeNi高熵合金的磨损量随摩擦频率和法向载荷的变化均大体呈现正相关性.随着摩擦频率升高(6~40 Hz),该高熵合金摩擦界面的原子排列由主要沿(100)晶面逐渐转变为沿(111)晶面,表现出显著的择优取向,其主要磨损机制由氧化磨损和分层磨损逐步过渡到塑性变形和分层磨损;拉曼光谱分析表明该合金在各摩擦频率(除30 Hz外)下形成的磨痕中存在复杂氧化物,其结晶构造与Al2O3和Cr2O3相似.随着法向载荷不断增大(10~200 N),该合金摩擦界面的晶粒更加细化,摩擦界面的原子排列更加趋向沿(111)晶面,其主要磨损机制由氧化磨损过渡到疲劳磨损,最终转变为黏着磨损.由于细晶强化作用,经抛丸处理后该AlCoCrFeNi高熵合金表面显微硬度达403 HV,相比抛丸前提高近1倍.抛丸处理形成的表面强化层有利于降低合金的磨损,其厚度约为25μm.随着...  相似文献   

11.
采用电弧离子镀技术利用Ti50Al50、Ti50Al49Ag1、Ti50Al45Ag5合金靶沉积制备出了TiAlN及不同Ag含量的TiAlAgN涂层. 利用球-盘式摩擦磨损试验机研究了室温、200、400和600 ℃等温度下的摩擦学性能;通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、显微硬度计、表面轮廓仪和划痕仪对磨损前后涂层的表面形貌、微观结构、硬度及涂层结合力进行了分析. 结果表明:TiAlN、TiAlAgN(Ag原子百分数0.12%)、TiAlAgN(Ag原子百分数0.30%)涂层的厚度分别为为4.18、5.31和4.69 μm,硬度分别为HV0.2 2 049.4、HV0.2 1 672.9、HV0.2 1 398.5;TiAlN、TiAlAgN涂层的衍射峰位与面心立方的TiN相同,掺入Ag后TiAlN涂层的择优取向变为N(220)面. 三种涂层在不同温度下的磨损机理主要为黏着磨损与磨粒磨损. 室温时TiAlN涂层的摩擦系数比其他两种涂层要小约0.3,200 ℃时三种涂层的磨损率较大,400 ℃时掺Ag涂层的耐磨效果达到最佳. 此外,当Ag原子百分数在0.12%~0.30%范围时,随着Ag含量增加,涂层的结合力降低.   相似文献   

12.
高熵合金,以其独特的合金设计和优异的综合性能,成为当下材料研究的热点。本文利用高真空电弧熔炼法成功制备出了CoCrFeNiAlx(x=0, 0.6, 1)系高熵合金,并通过分离式霍普金森压杆对其进行一系列不同应变速率下的动态压缩试验。通过X射线、扫描电镜和透射电镜分析,深入探索了该合金系的晶体结构、微观组织和变形特征。最后,利用修正后的Johnson-Cook (J-C)本构模型,获得了该体系高熵合金的动态本构关系。  相似文献   

13.
高熵合金由于多主元元素混合引起高熵结构效应,使其具有优异的物理、力学和化学特性,如高强度、高耐磨性、耐蚀性、热稳定性、优异的抗辐照性能等。然而,辐照诱发高熵合金材料的硬化行为和力学性能预测仍缺少相关研究,严重地限制了对其长期服役后材料性能的评估。基于晶体塑性理论结合实验结果,研究了空洞形状依赖的硬化行为、位错环诱发的硬化行为以及氧化物弥散增强的高熵合金力学性能。研究发现,考虑多面体空洞与位错的概率依赖的空间交互作用,能够更加准确地预测辐照金属的屈服应力;晶格畸变对屈服强度,有着重要的贡献;氧化物弥散相对位错运动起强烈钉扎的作用,从而对强度产生影响,直接决定抗辐照性能。高熵合金作为一种具有综合优异力学性能的新型结构材料,在先进核能系统中有望被广泛应用,比如核反应堆的核燃料包壳管。  相似文献   

14.
为了提高Ti6Al4V合金的耐磨减摩性能,在其表面利用激光熔覆技术制备出两种不同配比的Ti3SiC2/Ni60复合涂层,分别是5%Ti3SiC2+Ni60(N1)和10%Ti3SiC2+Ni60(N2)(均为质量分数),研究了这两种涂层在室温、300和600 ℃下的微观组织、显微硬度、摩擦学性能表现及相关磨损机理. 结果表明:涂层主要由硬质相TiC/TiB/TixNiy,γ-Ni固溶体连续相和润滑相Ti3SiC2组成. N1、N2涂层的显微硬度均为基体(350HV0.5)的3倍左右,分别为1 101.90HV0.5 和1 037.23HV0.5 ,在室温、300和600 ℃下的摩擦系数分别为0.39、0.35、0.30和0.41、0.45、0.44,均小于基体的摩擦系数(0.51、0.49、0.47). N1、N2涂层在室温、300和600 ℃下的磨损率分别为3.07×10?5、1.47×10?5、0.77×10?5 mm3/(N·m)和1.45×10?5、0.96×10?5、0.62×10?5 mm3/(N·m),均远小于基体[35.96×10?5、25.99×10?5、15.18×10?5mm3/(N·m)]. 在本文中Ti3SiC2提高了Ti6Al4V合金的耐磨减摩性能,使得N1涂层表现出更好的减摩性能,N2涂层表现出更好的耐磨性能. 室温下,磨粒磨损、塑性变形以及轻微的黏着磨损为两种涂层的主要磨损机理;300 ℃时,塑性变形、氧化磨损和黏着磨损是N1涂层的对应机理,600 ℃时出现了三体磨粒磨损;在300和600 ℃时,黏着磨损、氧化磨损及磨粒磨损为N2涂层的主要磨损机理.   相似文献   

15.
高熵合金由于多主元元素混合引起高熵结构效应,使其具有优异的物理、力学和化学特性,如高强度、高耐磨性、耐蚀性、热稳定性、优异的抗辐照性能等。然而,辐照诱发高熵合金材料的硬化行为和力学性能预测仍缺少相关研究,严重地限制了对其长期服役后材料性能的评估。基于晶体塑性理论结合实验结果,研究了空洞形状依赖的硬化行为、位错环诱发的硬化行为以及氧化物弥散增强的高熵合金力学性能。研究发现,考虑多面体空洞与位错的概率依赖的空间交互作用,能够更加准确地预测辐照金属的屈服应力;晶格畸变对屈服强度,有着重要的贡献;氧化物弥散相对位错运动起强烈钉扎的作用,从而对强度产生影响,直接决定抗辐照性能。高熵合金作为一种具有综合优异力学性能的新型结构材料,在先进核能系统中有望被广泛应用,比如核反应堆的核燃料包壳管。  相似文献   

16.
高熵合金作为一种多主元合金,突破了传统合金单主元的设计思想,体现出不同于传统合金的优异性能,特别在高温、高压、高应变率等极端环境中有着良好的应用前景。从微观、细观与宏观尺度分析高熵合金的冲击变形特性对于其工程应用具有重要的指导作用,主要涉及元素效应、细观结构以及高温高应变率条件对高熵合金冲击损伤演化、微观结构变化和冲击变形演化过程的影响机制。元素效应主要讨论了原子半径差异较大的金属与非金属元素对高熵合金冲击变形行为的影响;根据细观结构不同,将高熵合金分为单相与多相结构,单相高熵合金为塑性较好的面心立方(face centered cubic,FCC)结构、强度较高的体心立方(body centered cubic,BCC)与密排六方(hexagonal close-packed,HCP)结构。多相高熵合金的细观结构为这三种单相结构或者与其他相的组合,多相高熵合金的协同变形能够使其获得更为优异的综合力学性能。高温与高应变率作为外部条件对高熵合金的影响与其他金属相似,高温促进材料软化而高应变率促进材料硬化,部分高熵合金在高温下具有更优异的抗变形能力。针对高熵合金的冲击特性,总结了目前高熵合金在国防工程冲击领域的应用,归纳了高熵合金冲击变形行为研究存在的问题,并进一步对高熵合金在极端条件下的应用进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号