首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
高熵合金强韧化理论建模与模拟研究进展   总被引:1,自引:0,他引:1  
高熵合金因其优异的性能受到广泛关注,如高强度、高硬度、高韧性、高耐磨、高耐辐照、高耐腐蚀、高电阻、高耐热等,有望应用于核能、航天航空等重要领域和重大装备。从高熵合金制备、组织结构以及性能表征等方面开展的实验研究表明其独特的性质依赖于高熵合金高熵效应、晶格畸变和扩散迟滞。在微观尺度以及宏观尺度, 理论模型和数值模拟为研究高熵合金微观机理和力学特性提供了一种方法。建立从高熵合金的微观结构与变形机理到宏观独特力学性能的联系是一个多尺度的科学问题。最近,基于实验观察结果,采用多尺度的理论与模拟方法(第一性原理、分子动力学、离散位错动力学、晶体塑性有限元、微结构依赖的理论模型),研究了高熵合金层错能、弹性模量、扩散系数以及相稳定性,揭示了高熵合金变形与强韧化机制。本文综述多尺度计算在高熵合金力学性能和变形行为方面的研究进展,并对高熵合金在原位变形实验、高通量技术以及机器学习方面的研究进行简要展望。  相似文献   

2.
高熵合金作为一种多主元合金,突破了传统合金单主元的设计思想,体现出不同于传统合金的优异性能,特别在高温、高压、高应变率等极端环境中有着良好的应用前景。从微观、细观与宏观尺度分析高熵合金的冲击变形特性对于其工程应用具有重要的指导作用,主要涉及元素效应、细观结构以及高温高应变率条件对高熵合金冲击损伤演化、微观结构变化和冲击变形演化过程的影响机制。元素效应主要讨论了原子半径差异较大的金属与非金属元素对高熵合金冲击变形行为的影响;根据细观结构不同,将高熵合金分为单相与多相结构,单相高熵合金为塑性较好的面心立方(face centered cubic,FCC)结构、强度较高的体心立方(body centered cubic,BCC)与密排六方(hexagonal close-packed,HCP)结构。多相高熵合金的细观结构为这三种单相结构或者与其他相的组合,多相高熵合金的协同变形能够使其获得更为优异的综合力学性能。高温与高应变率作为外部条件对高熵合金的影响与其他金属相似,高温促进材料软化而高应变率促进材料硬化,部分高熵合金在高温下具有更优异的抗变形能力。针对高熵合金的冲击特性,总结了目前高熵合金在国防工程冲击领域的应用,归纳了高熵合金冲击变形行为研究存在的问题,并进一步对高熵合金在极端条件下的应用进行了展望。  相似文献   

3.
高熵合金是近年来提出的一种新的合金设计理念,打破了一般合金中以1种或2种元素为主,辅以极少量其他元素来改善合金性能的传统思想,由多种元素以等原子或近似等原子比混合后形成具有独特原子结构特征的单一固溶体合金.高熵合金的多主元特性使其在变形过程中表现出多重机制(包括位错机制、形变孪生、相变等)的协同,因而高熵合金已经展示了优异的力学性能,如高强、高硬、高塑性、抗高温软化、抗辐照、耐磨等,被认为是最具有应用潜力的新型高性能金属结构材料,已经成为国际固体力学和材料科学领域研究的热点.本文首先介绍了高熵合金独特的结构特征,即具有短程有序结构和严重的晶格畸变;随后对近年来针对不同类型高熵合金(包括具有面心立方相、体心立方相、密排六方相、多相以及亚稳态高熵合金)力学性能、变形行为方面的研究成果,特别是强韧化机制以及相关的原子尺度模拟,进行了较为系统的综述;最后强调了高熵合金未来研究中所面临的一些主要问题和挑战,并对其研究进行了展望.  相似文献   

4.
高熵合金是近年来提出的一种新的合金设计理念,打破了一般合金中以1种或2种元素为主,辅以极少量其他元素来改善合金性能的传统思想,由多种元素以等原子或近似等原子比混合后形成具有独特原子结构特征的单一固溶体合金.高熵合金的多主元特性使其在变形过程中表现出多重机制(包括位错机制、形变孪生、相变等)的协同,因而高熵合金已经展示了优异的力学性能,如高强、高硬、高塑性、抗高温软化、抗辐照、耐磨等,被认为是最具有应用潜力的新型高性能金属结构材料,已经成为国际固体力学和材料科学领域研究的热点.本文首先介绍了高熵合金独特的结构特征, 即具有短程有序结构和严重的晶格畸变;随后对近年来针对不同类型高熵合金(包括具有面心立方相、体心立方相、密排六方相、多相以及亚稳态高熵合金)力学性能、变形行为方面的研究成果,特别是强韧化机制以及相关的原子尺度模拟, 进行了较为系统的综述;最后强调了高熵合金未来研究中所面临的一些主要问题和挑战,并对其研究进行了展望.   相似文献   

5.
中高熵合金是近二十年提出的一种多主元金属合金,打破了传统合金以1-2种金属元素为主元的设计理念.中高熵合金由于多主元的成份设计提高了材料的构型熵和混合熵,展现出许多奇特的组织结构和性能.相比铝合金、钛合金以及钢铁等传统金属,中高熵合金表现出优异的准静态力学性能和动态力学性能等.在高应变速率下,材料的塑性变形受到更多因素的影响,如应变率、温度等.本文首先介绍中高熵合金动态力学性能(包括动态剪切、夏比冲击,动态层裂强度,侵彻自锐性等)的相关研究,并总结了中高熵合金动态变形的微结构变形机理;随后综合概括了中高熵合金中绝热剪切带行为和温度效应的研究现状;最后对中高熵合金在冲击动力学领域的应用和研究趋势提出展望.  相似文献   

6.
鉴于高熵合金材料(high-entropyalloy,HEA)在高应变率动态响应下呈现不同的破坏模式及力学性能,其潜在机理从宏观角度已不能够完全解释,需从微观角度研究其动态响应过程中的原子结构变化、位错分布变化、演变机理及变形机制,为优化HEA防护材料的加工工艺、制备方法等提供参考。利用分子动力学模拟的方法,设计了[100]、[110]和[111]等3种取向结构的Al0.3CoCrFeNi高熵合金在不同应变率下的压缩、拉伸及冲击试验,分析了动态响应过程中原子结构变化、位错分布变化、演变机理及变形机制。压缩试验中:[110]取向结构的Al0.3CoCrFeNi高熵合金的屈服强度最高,[111]的次之,[100]的最低;[100]取向结构的Al0.3CoCrFeNi高熵合金主要的变形机制为孪晶变形,[110]的为滑移变形,[111]的为位错变形。拉伸试验中:[111]取向结构的Al0.3CoCrFeNi高熵合金的屈服强度最高,[100]的次之,[110]的最低;[100]取向结构Al0.3  相似文献   

7.
高熵合金由于多主元元素混合引起高熵结构效应,使其具有优异的物理、力学和化学特性,如高强度、高耐磨性、耐蚀性、热稳定性、优异的抗辐照性能等。然而,辐照诱发高熵合金材料的硬化行为和力学性能预测仍缺少相关研究,严重地限制了对其长期服役后材料性能的评估。基于晶体塑性理论结合实验结果,研究了空洞形状依赖的硬化行为、位错环诱发的硬化行为以及氧化物弥散增强的高熵合金力学性能。研究发现,考虑多面体空洞与位错的概率依赖的空间交互作用,能够更加准确地预测辐照金属的屈服应力;晶格畸变对屈服强度,有着重要的贡献;氧化物弥散相对位错运动起强烈钉扎的作用,从而对强度产生影响,直接决定抗辐照性能。高熵合金作为一种具有综合优异力学性能的新型结构材料,在先进核能系统中有望被广泛应用,比如核反应堆的核燃料包壳管。  相似文献   

8.
非晶合金弛豫/晶化、玻璃转变、塑性变形等热力学和动力学行为都与其固有的结构非均匀性密切相关. 但是, 由于淹没在亚稳的长程无序结构中, 探究非晶合金的结构非均匀性十分困难. 尤其, 非晶合金微观结构非均匀性与其力学性能之间的本征关联是一个亟待解决的重要科学问题. 本文基于多尺度时空下的力学激励阐述非晶合金微观结构非均匀性特征与演化规律. 从实验、理论和数值模拟方面出发, 梳理了非晶合金微观结构非均匀性与弛豫机制和力学行为之间的关联. 最后, 针对非晶合金微观结构非均匀性与其物理/力学性能研究的方向提出了建议和展望.   相似文献   

9.
近年来,梯度纳米结构金属因其优越的力学性能和独特的塑性变形机理受到广泛关注,已成为材料与力学学科的热点和前沿。本文首先介绍梯度纳米结构金属的强度、塑性、加工硬化和抗疲劳等核心力学性能,以及晶粒长大、塑性应变梯度和几何必需位错等塑性变形机理及其力学研究。其次介绍梯度纳米结构金属的多尺度计算与模拟研究。最后讨论梯度纳米结构金属研究领域存在的挑战。  相似文献   

10.
摘要:高熵合金是一种由多种主元元素组成的新型合金。实验研究表明等原子比CrMnFeCoNi高熵合金在低温下具有比室温更高的拉伸强度和断裂韧性。本文针对这一现象,利用分子动力学模拟对平均晶粒尺寸为6 nm的CrMnFeCoNi纳米晶在300、200和77 K下分别进行拉伸模拟。模拟研究揭示了纳米尺度CrMnFeCoNi高熵合金力学行为的温度效应和强韧机理。微结构演化分析表明:低温下,塑性变形阶段,滑移系开动的较少,位错滑移所受的阻力越大,屈服强度和抗拉强度越大;模型破坏时,孔洞缺陷形核较慢,更多孔洞缺陷演化成断口,更多的断口分摊拉伸应变,使得高熵合金纳米晶的低温韧性更好。  相似文献   

11.
The multi-scale deformation and interfacial mechanical behavior of carbon nanotube fibers with multi-level structures are investigated by experimental and theoretical methods. Multi-scale experiments including uniaxial tensile testing, in situ Raman spectroscopy, and scanning electron microscopy are conducted to measure the mechanical response of multi-level structures within the fiber under tension. A two-level interfacial mechanical model is then presented to analyze the interfacial bonding strength of mesoscopic bundles and microscopic nanotubes. The evolution characteristics of multi-scale deformation of the fiber are described based on experimental characterization and interfacial strength analysis. The strengthening mechanism of the fiber is further studied. Comprehensive analysis shows that the property of multi-level interfaces is a critical factor for the fiber strength and toughness. Finally, the method of improving the mechanical properties of fiber-based materials is discussed. The result can be used to guide multi-level interface engineering of carbon nanotube fibers and fiber-based composites to produce high performance materials.  相似文献   

12.
宋卫东  刘海燕  宁建国 《力学学报》2010,42(6):1149-1155
采用MTS材料实验机和旋转盘式间接杆--杆型冲击拉伸试验装置对质量百分数为91%的钨合金材料力学性能进行了研究. 基于试验结果, 建立了具有钨合金典型细观结构的单胞有限元模型, 采用不动点迭代方法给出了该有限元模型的真实位移条件, 分析了不同颗粒度形状以及钨颗粒体积含量等细观参量对钨合金材料在不同载荷作用下力学性能的影响, 给出了钨合金材料在不同载荷作用下的应力--应变曲线, 并与试验结果进行了对比, 二者具有较好的一致性. 通过数值模拟发现不同颗粒度的钨合金材料均为应变率敏感材料; 钨颗粒长径比对材料力学性能的影响不大; 随着钨颗粒质量分数的增加, 钨合金材料的屈服应力有所提高.   相似文献   

13.
高熵合金,以其独特的合金设计和优异的综合性能,成为当下材料研究的热点。本文利用高真空电弧熔炼法成功制备出了CoCrFeNiAlx(x=0, 0.6, 1)系高熵合金,并通过分离式霍普金森压杆对其进行一系列不同应变速率下的动态压缩试验。通过X射线、扫描电镜和透射电镜分析,深入探索了该合金系的晶体结构、微观组织和变形特征。最后,利用修正后的Johnson-Cook (J-C)本构模型,获得了该体系高熵合金的动态本构关系。  相似文献   

14.
15.
高熵合金由于多主元元素混合引起高熵结构效应,使其具有优异的物理、力学和化学特性,如高强度、高耐磨性、耐蚀性、热稳定性、优异的抗辐照性能等。然而,辐照诱发高熵合金材料的硬化行为和力学性能预测仍缺少相关研究,严重地限制了对其长期服役后材料性能的评估。基于晶体塑性理论结合实验结果,研究了空洞形状依赖的硬化行为、位错环诱发的硬化行为以及氧化物弥散增强的高熵合金力学性能。研究发现,考虑多面体空洞与位错的概率依赖的空间交互作用,能够更加准确地预测辐照金属的屈服应力;晶格畸变对屈服强度,有着重要的贡献;氧化物弥散相对位错运动起强烈钉扎的作用,从而对强度产生影响,直接决定抗辐照性能。高熵合金作为一种具有综合优异力学性能的新型结构材料,在先进核能系统中有望被广泛应用,比如核反应堆的核燃料包壳管。  相似文献   

16.
吴文旺  夏热 《力学进展》2022,52(3):673-718
随着先进制造技术、多学科交叉和人工智能科技的飞速发展, 高端装备呈现出轻量化、集成化、复合化、功能化、智能化、柔性化和仿生化等发展趋势. 传统结构研究存在结构设计和制造相互分离, 复杂结构制造效率低、实际制造结构的性能指标和使用可靠性大幅低于设计理论预测、结构多功能一体化程度不足、经济成本过高等问题. 此外, 先进工业装备对材料、结构的使用性能、使用环境要求越来越高, 亟需开展结构的设计、制造、功能、应用一体化研究, 为解决我国先进制造“卡脖子”技术难题提供理论依据和技术支持. 轻量化多功能点阵超结构具有轻质高强、抗冲击吸能、减振降噪等性能优势, 在航空航天、交通运输、国防、生物医疗、能源、机械等工业领域具有巨大的应用潜力. 有鉴于此, 受多晶体微结构的多尺度力学设计启发, 以“点阵超结构力学设计”为主题, 开展点阵超结构的节点、杆件组元, 胞元类型、双相结构、梯度结构、多层级结构等典型点阵超结构的几何构筑和力学设计, 并阐明多晶体多尺度微观结构启发的点阵超结构力学设计基本原理、多功能力学性能调控方法, 以及点阵超结构在不同类型载荷下的结构变形和失效物理机理.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号