首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高熵合金是近年来提出的一种新的合金设计理念,打破了一般合金中以1种或2种元素为主,辅以极少量其他元素来改善合金性能的传统思想,由多种元素以等原子或近似等原子比混合后形成具有独特原子结构特征的单一固溶体合金.高熵合金的多主元特性使其在变形过程中表现出多重机制(包括位错机制、形变孪生、相变等)的协同,因而高熵合金已经展示了优异的力学性能,如高强、高硬、高塑性、抗高温软化、抗辐照、耐磨等,被认为是最具有应用潜力的新型高性能金属结构材料,已经成为国际固体力学和材料科学领域研究的热点.本文首先介绍了高熵合金独特的结构特征, 即具有短程有序结构和严重的晶格畸变;随后对近年来针对不同类型高熵合金(包括具有面心立方相、体心立方相、密排六方相、多相以及亚稳态高熵合金)力学性能、变形行为方面的研究成果,特别是强韧化机制以及相关的原子尺度模拟, 进行了较为系统的综述;最后强调了高熵合金未来研究中所面临的一些主要问题和挑战,并对其研究进行了展望.   相似文献   

2.
高熵合金作为一种多主元合金,突破了传统合金单主元的设计思想,体现出不同于传统合金的优异性能,特别在高温、高压、高应变率等极端环境中有着良好的应用前景。从微观、细观与宏观尺度分析高熵合金的冲击变形特性对于其工程应用具有重要的指导作用,主要涉及元素效应、细观结构以及高温高应变率条件对高熵合金冲击损伤演化、微观结构变化和冲击变形演化过程的影响机制。元素效应主要讨论了原子半径差异较大的金属与非金属元素对高熵合金冲击变形行为的影响;根据细观结构不同,将高熵合金分为单相与多相结构,单相高熵合金为塑性较好的面心立方(face centered cubic,FCC)结构、强度较高的体心立方(body centered cubic,BCC)与密排六方(hexagonal close-packed,HCP)结构。多相高熵合金的细观结构为这三种单相结构或者与其他相的组合,多相高熵合金的协同变形能够使其获得更为优异的综合力学性能。高温与高应变率作为外部条件对高熵合金的影响与其他金属相似,高温促进材料软化而高应变率促进材料硬化,部分高熵合金在高温下具有更优异的抗变形能力。针对高熵合金的冲击特性,总结了目前高熵合金在国防工程冲击领域的应用,归纳了高熵合金冲击变形行为研究存在的问题,并进一步对高熵合金在极端条件下的应用进行了展望。  相似文献   

3.
针对工业领域对新型高强高耐磨金属材料的需求,制备了(CuMnNi)100-xAlx (x=0, 5, 10, 15)系列高熵铜合金,研究了Al含量对高熵铜合金的物相组成、显微组织、力学性能和摩擦磨损性能的影响. 结果表明:CuMnNi高熵合金仅由面心立方结构(FCC)的高熵固溶体相组成,Al元素的添加对合金基体FCC相产生了强烈的固溶强化作用,并促进了体心立方(BCC)相形成. FCC相具有良好的塑性和韧性,而BCC相具有高强度和高硬度,两者共同作用使(CuMnNi)100-xAlx系列高熵铜合金的强度随Al含量增加而提高,而塑性和韧性不断降低. 其中,(CuMnNi)90Al10高熵铜合金中FCC相和BCC相的含量达到最佳匹配,使其具有优异的综合力学性能. 室温下,得益于优异的力学性能和硬质BCC相良好的抗磨作用,(CuMnNi)90Al10高熵铜合金的耐磨性优于常规耐磨铝青铜C6161,磨粒磨损为其主要磨损机制.   相似文献   

4.
采用真空感应熔炼技术制备了CoCrFeMoNiCx (x=0、1、2、3、4和5)系列中熵合金,研究了C元素的掺杂及其含量对合金微观组织、力学性能和摩擦学性能的影响. 结果表明:CoCrFeMoNiCx系列中熵合金主要由体心立方(BCC)相组成;C原子间隙固溶于BCC相,增大了合金的晶格常数,在XRD谱图中表现为衍射峰随着C含量的增加向小角度方向偏移;当C的质量分数大于2%时,BCC晶粒中有少量条状碳化物形成;随着C含量的增加,合金的硬度、强度和断裂韧性等力学性能显著提高,主要归因于C原子的间隙固溶强化效应和少量条状碳化物的出现. 与此同时,合金的磨损率持续降低,表现出良好的耐磨损性能. 室温下的磨损机制为磨粒磨损、塑性变形和疲劳磨损.   相似文献   

5.
通过引入碳元素,设计了一种以原位形成的碳化物为增强相的高熵合金Al_(0.2)Co_(1.5)CrFe_(1.2)Ni_(1.5)TiC_(0.4),并采用放电等离子烧结(SPS)技术成功制备了这种高熵合金.采用XRD、SEM、EDS、万能材料试验机和高温摩擦磨损试验机等研究了微观组织、力学性能和室温至800℃下的摩擦学性能.结果表明:Al_(0.2)Co_(1.5)CrFe_(1.2)Ni_(1.5)TiC_(0.4)高熵合金由面心立方(FCC)结构的高熵固溶体基体相和弥散分布的TiC陶瓷相组成.FCC相使高熵合金具有良好的塑性和韧性,而TiC增强相赋予了高熵合金高的硬度和强度.随着温度的升高,高熵合金的摩擦系数和磨损率均具有逐渐减小的趋势.在800℃时,鉴于摩擦氧化作用,在磨损表面形成了致密的氧化物釉质层,起到了良好的减摩抗磨作用,使高熵合金表现出了优异的高温摩擦学性能.  相似文献   

6.
采用放电等离子烧结技术在NbTaWMo难熔高熵合金中掺杂Si元素成功制备了NbTaWMoSi0.25难熔高熵合金,研究了物相组成、显微结构和力学性能的变化,并重点对比了25 ~800 ℃的摩擦学性能. 结果表明:NbTaWMo高熵合金由单一的BCC相组成,而NbTaWMoSi0.25合金由BCC相和硅化物两相组成. 在NbTaWMo难熔高熵合金中掺杂Si元素后,高熵合金室温下的屈服强度、抗压强度和断裂应变均有显著的提高. NbTaWMo难熔高熵合金掺杂Si元素后从25 ℃到800 ℃摩擦系数变化较小,但其耐磨性显著改善,其耐磨性的提高主要由于硅化物增强了合金的强度. NbTaWMoSi0.25难熔高熵合金从室温到中温阶段的磨损机制主要为磨粒磨损,而高温阶段的磨损机制主要表现为磨粒磨损和氧化磨损的综合作用. NbTaWMoSi0.25高熵合金在宽温域内具有良好的耐磨性,在高温摩擦学领域具有较大的应用潜力.   相似文献   

7.
使用真空电弧熔炼技术制备了Al0.2Co1.5CrNi1.5Ti0.5Mox(x=0.0, 0.1, 0.2, 0.3, 0.4)高熵合金,研究了Mo含量对该高熵合金组织结构、力学性能和摩擦学性能的影响规律及其作用机制. Al0.2Co1.5CrNi1.5Ti0.5高熵合金由FCC相和有序AlNi3相组成,Mo元素添加后促进形成σ相.较大原子半径的Mo元素引发的晶格畸变效应和σ硬质相析出引起的第二相强化效应赋予高熵合金优良的力学和摩擦学性能.随着Mo含量的提高,合金的硬度增加了40.4%,屈服强度增加了32.1%.对该合金的摩擦磨损性能进行研究,发现Mo元素的添加显著改善了高熵合金的摩擦学性能,尤其是当Mo的摩尔比为0.4时,高熵合金室温磨损率为2.62×10-6 mm3/(N·m),800℃时的磨损率为6.23×10  相似文献   

8.
高熵合金因其优异的性能受到广泛关注,如高强度、高硬度、高韧性、高耐磨、高耐辐照、高耐腐蚀、高电阻、高耐热等,有望应用于核能、航天航空等重要领域和重大装备。从高熵合金制备、组织结构以及性能表征等方面开展的实验研究表明其独特的性质依赖于高熵合金高熵效应、晶格畸变和扩散迟滞。在微观尺度以及宏观尺度, 理论模型和数值模拟为研究高熵合金微观机理和力学特性提供了一种方法。建立从高熵合金的微观结构与变形机理到宏观独特力学性能的联系是一个多尺度的科学问题。最近,基于实验观察结果,采用多尺度的理论与模拟方法(第一性原理、分子动力学、离散位错动力学、晶体塑性有限元、微结构依赖的理论模型),研究了高熵合金层错能、弹性模量、扩散系数以及相稳定性,揭示了高熵合金变形与强韧化机制。本文综述多尺度计算在高熵合金力学性能和变形行为方面的研究进展,并对高熵合金在原位变形实验、高通量技术以及机器学习方面的研究进行简要展望。  相似文献   

9.
高熵合金强韧化理论建模与模拟研究进展   总被引:1,自引:0,他引:1  
高熵合金因其优异的性能受到广泛关注,如高强度、高硬度、高韧性、高耐磨、高耐辐照、高耐腐蚀、高电阻、高耐热等,有望应用于核能、航天航空等重要领域和重大装备。从高熵合金制备、组织结构以及性能表征等方面开展的实验研究表明其独特的性质依赖于高熵合金高熵效应、晶格畸变和扩散迟滞。在微观尺度以及宏观尺度, 理论模型和数值模拟为研究高熵合金微观机理和力学特性提供了一种方法。建立从高熵合金的微观结构与变形机理到宏观独特力学性能的联系是一个多尺度的科学问题。最近,基于实验观察结果,采用多尺度的理论与模拟方法(第一性原理、分子动力学、离散位错动力学、晶体塑性有限元、微结构依赖的理论模型),研究了高熵合金层错能、弹性模量、扩散系数以及相稳定性,揭示了高熵合金变形与强韧化机制。本文综述多尺度计算在高熵合金力学性能和变形行为方面的研究进展,并对高熵合金在原位变形实验、高通量技术以及机器学习方面的研究进行简要展望。  相似文献   

10.
中高熵合金是近二十年提出的一种多主元金属合金,打破了传统合金以1-2种金属元素为主元的设计理念.中高熵合金由于多主元的成份设计提高了材料的构型熵和混合熵,展现出许多奇特的组织结构和性能.相比铝合金、钛合金以及钢铁等传统金属,中高熵合金表现出优异的准静态力学性能和动态力学性能等.在高应变速率下,材料的塑性变形受到更多因素的影响,如应变率、温度等.本文首先介绍中高熵合金动态力学性能(包括动态剪切、夏比冲击,动态层裂强度,侵彻自锐性等)的相关研究,并总结了中高熵合金动态变形的微结构变形机理;随后综合概括了中高熵合金中绝热剪切带行为和温度效应的研究现状;最后对中高熵合金在冲击动力学领域的应用和研究趋势提出展望.  相似文献   

11.
为了探究不同应变速率下WFeNiMo高熵合金的变形行为和侵彻性能, 采用万能材料试验机、分离式霍普金森压杆开展了高熵合金的静动态力学性能试验, 讨论了其在不同应变速率下变形特征微观机制. 基于弹道枪试验平台开展了高熵合金与典型钨合金(93W-4.9Ni-2.1Fe,wt%)破片对有限厚钢靶侵彻作用性能试验研究, 分析了两种合金破片侵彻作用过程与靶板破坏特征、侵彻穿孔能量消耗与撞击速度间的关系. 结果表明: 高熵合金、钨合金材料屈服强度与应变率呈正相关, 且在相同的应变率下高熵合金具有更高的屈服强度; 随着应变率的提高, 高熵合金由脆性断裂、韧脆混合的准解理断裂发展至具有黏着特性的破碎变形模式; 高熵合金具有较强的局部绝热变形能力, 在侵彻薄钢靶时体现出较高的剪切敏感性; 相同撞击速度下, 高熵合金破片穿靶消耗的能量低于钨合金破片, 对于薄钢靶具有更强的侵彻穿透能力. 高熵合金具有优异的力学性能和侵彻能力, 在高速撞击薄靶板时除了传统的剪切冲塞作用还具有一定的能量释放特性, 在预制破片上有较好的应用前景.   相似文献   

12.
采用真空电弧熔炼技术制备了CoCrFeNiWx(x=0.25、0.5、0.75及1.0)系列高熵合金,研究了W元素含量对合金晶体结构、显微组织、力学性能以及室温与900℃摩擦学性能的影响.结果表明:合金中W含量较低时形成单相面心立方(FCC)固溶体,W含量较高时会促进金属间化合物μ相的形成,随着W含量提升,合金显微组织由FCC胞状树枝晶(x=0.25)转变为FCC树枝晶及晶间层片状(FCC+μ)共晶组织(x=0.5、0.75),最后转变为FCC基体上分布的粗大树枝状μ相(x=1.0).由于W元素的固溶强化及原位生成金属间化合物μ相的第二相强化作用,使合金的强度和硬度等力学性能显著增加的同时塑性降低.在试验载荷为10 N,滑动速度0.3 m/s的测试条件下,CoCrFeNiWx系列高熵合金与Si3N4陶瓷球配副时的球-盘摩擦试验结果表明:W元素的添加显著改善了合金的室温耐磨性,但对摩擦系数的影响较小;而900℃摩擦时,摩擦表面形成的多元复合氧化物摩擦釉质层具有良好的减摩抗磨作用,特别是W元素氧化产生的...  相似文献   

13.
为了探究不同应变速率下WFeNiMo高熵合金的变形行为和侵彻性能, 采用万能材料试验机、分离式霍普金森压杆开展了高熵合金的静动态力学性能试验, 讨论了其在不同应变速率下变形特征微观机制. 基于弹道枪试验平台开展了高熵合金与典型钨合金(93W-4.9Ni-2.1Fe,wt%)破片对有限厚钢靶侵彻作用性能试验研究, 分析了两种合金破片侵彻作用过程与靶板破坏特征、侵彻穿孔能量消耗与撞击速度间的关系. 结果表明: 高熵合金、钨合金材料屈服强度与应变率呈正相关, 且在相同的应变率下高熵合金具有更高的屈服强度; 随着应变率的提高, 高熵合金由脆性断裂、韧脆混合的准解理断裂发展至具有黏着特性的破碎变形模式; 高熵合金具有较强的局部绝热变形能力, 在侵彻薄钢靶时体现出较高的剪切敏感性; 相同撞击速度下, 高熵合金破片穿靶消耗的能量低于钨合金破片, 对于薄钢靶具有更强的侵彻穿透能力. 高熵合金具有优异的力学性能和侵彻能力, 在高速撞击薄靶板时除了传统的剪切冲塞作用还具有一定的能量释放特性, 在预制破片上有较好的应用前景.  相似文献   

14.
AlCoCrFeNi高熵合金因其优异的综合力学性能而有望成为新一代高温结构材料,但对其高温摩擦磨损性能的研究还较为少见.本文中应用放电等离子烧结(SPS)技术制备了AlCoCrFeNi高熵合金,研究了其显微组织和力学性能,系统地考察了其在室温至800℃时的摩擦磨损性能.结果表明:应用SPS技术制备的AlCoCrFeNi高熵合金主要由FCC相、无序BCC相和少量有序BCC相组成;呈网格状分布的FCC相使高熵合金具有良好的塑性和韧性,而呈等轴状分布的BCC相赋予了高熵合金优异的强度;高熵合金室温至800℃时的摩擦系数在0.43~0.51之间,磨损率低于10–5mm3/(N·m).室温至中温阶段主要为磨粒磨损,中温至高温阶段的磨损机制为磨粒磨损、黏着磨损和塑性变形综合作用.高温下高熵合金表面形成了一层主要由为Al2O3和Cr2O3组成的氧化物膜,在一定程度上起到抗磨作用.  相似文献   

15.
高熵合金由于多主元元素混合引起高熵结构效应,使其具有优异的物理、力学和化学特性,如高强度、高耐磨性、耐蚀性、热稳定性、优异的抗辐照性能等。然而,辐照诱发高熵合金材料的硬化行为和力学性能预测仍缺少相关研究,严重地限制了对其长期服役后材料性能的评估。基于晶体塑性理论结合实验结果,研究了空洞形状依赖的硬化行为、位错环诱发的硬化行为以及氧化物弥散增强的高熵合金力学性能。研究发现,考虑多面体空洞与位错的概率依赖的空间交互作用,能够更加准确地预测辐照金属的屈服应力;晶格畸变对屈服强度,有着重要的贡献;氧化物弥散相对位错运动起强烈钉扎的作用,从而对强度产生影响,直接决定抗辐照性能。高熵合金作为一种具有综合优异力学性能的新型结构材料,在先进核能系统中有望被广泛应用,比如核反应堆的核燃料包壳管。  相似文献   

16.
采用激光熔覆技术成功制备了CoCrFeNiNbx (x=0, 0.25, 0.5, 0.75, 1.0)高熵合金涂层,研究了Nb元素对高熵合金涂层微观组织和显微硬度的影响,分析了CoCrFeNiNb0.75涂层在25~800 ℃的摩擦磨损性能和机制. 结果表明:CoCrFeNiNbx高熵合金涂层主要由FCC (面心立方)相与具有HCP晶格结构的Laves相组成. 随着Nb摩尔含量的增加,CoCrFeNiNbx的微观组织由单一的胞状晶FCC固溶体相(x=0)向亚共晶组织(x=0.25)、共晶组织(x=0.5)和过共晶组织(x=0.75,1.0)逐步发生演变. CoCrFeNiNb0.75涂层具有最高的平均硬度(574 HV),表明适量的Nb元素的掺杂能有效提高涂层的显微硬度,这是固溶强化、第二相强化以及层片共晶组织中产生的大量新界面阻碍位错运动的边界强化相互作用的结果. CoCrFeNiNb0.75涂层在室温下的磨损机制主要为氧化磨损和轻微的磨粒磨损,而在400和800 ℃下均为氧化磨损. 在800 ℃时,磨损表面形成了致密的氧化物釉质层,起到了良好的减摩抗磨作用,使高熵合金在高温环境下表现出了优异的摩擦磨损性能.   相似文献   

17.
高熵合金由于多主元元素混合引起高熵结构效应,使其具有优异的物理、力学和化学特性,如高强度、高耐磨性、耐蚀性、热稳定性、优异的抗辐照性能等。然而,辐照诱发高熵合金材料的硬化行为和力学性能预测仍缺少相关研究,严重地限制了对其长期服役后材料性能的评估。基于晶体塑性理论结合实验结果,研究了空洞形状依赖的硬化行为、位错环诱发的硬化行为以及氧化物弥散增强的高熵合金力学性能。研究发现,考虑多面体空洞与位错的概率依赖的空间交互作用,能够更加准确地预测辐照金属的屈服应力;晶格畸变对屈服强度,有着重要的贡献;氧化物弥散相对位错运动起强烈钉扎的作用,从而对强度产生影响,直接决定抗辐照性能。高熵合金作为一种具有综合优异力学性能的新型结构材料,在先进核能系统中有望被广泛应用,比如核反应堆的核燃料包壳管。  相似文献   

18.
采用真空电弧熔炼技术制备了NiAlCoCrFeTi (HESA-1)和NiAlCoCrFeTiTaMoW (HESA-2)这2种典型的高熵高温合金,研究了其微观组织、力学性能和25~900℃的摩擦学性能.结果表明:2种合金均由无序面心立方晶格(FCC)结构的γ相和有序FCC结构的γ’相组成;γ相使该合金具有良好的塑性和韧性,γ’相赋予其较高的强度和硬度. 25~900℃,2种合金的摩擦系数和磨损率均随温度的升高而呈下降趋势. 25℃时,磨损机制主要为磨粒磨损,摩擦系数较大且磨损率较高. 400℃以上时,在摩擦氧化和热氧化的作用下,磨痕表面开始形成1层不连续的氧化物釉质层,摩擦系数和磨损率均有所降低.当温度达到900℃时,磨痕表面上形成了1层光滑且致密的氧化物釉质层,该釉质层具有良好的减摩抗磨作用,使HESA-1和HESA-2这2种合金的摩擦系数分别降至0.26和0.25,磨损率分别降至13.3×10-6和8.0×10-6 mm3/(N·m).在高温摩擦过程中,合金表面的Al、Cr、Ni和Co等元素在摩擦热和环境热的共同作...  相似文献   

19.
镁合金塑性机制研究综述   总被引:1,自引:0,他引:1  
纯镁具有丰富的微观塑性机制,尤其是孪晶,导致其塑性变形错综复杂,力学性能也与常见的面心及体心立方金属有显著差异。由于现今学界对位错滑移与孪晶变形等塑性机制缺乏充分认识,镁合金性能调控效果尚不理想,与铝合金相比,镁合金的力学性能还有很大的提升空间。基于此背景,本文首先回顾了镁合金的发展历史与应用现状。然后介绍了镁中位错滑移与孪晶变形等塑性机制的研究进展,重点阐述位错、孪晶、晶界、析出相、溶质原子等重要的微结构,并简要介绍了计算机模拟方法。最后展望了强韧性能方面值得重视的若干研究方向。  相似文献   

20.
采用SRV-Ⅳ型微动摩擦磨损试验机对近单一面心立方(FCC)相AlCoCrFeNi高熵合金及其抛丸试样在常温下的摩擦磨损性能和行为进行了较详细的考察. AlCoCrFeNi高熵合金的磨损量随摩擦频率和法向载荷的变化均大体呈现正相关性.随着摩擦频率升高(6~40 Hz),该高熵合金摩擦界面的原子排列由主要沿(100)晶面逐渐转变为沿(111)晶面,表现出显著的择优取向,其主要磨损机制由氧化磨损和分层磨损逐步过渡到塑性变形和分层磨损;拉曼光谱分析表明该合金在各摩擦频率(除30 Hz外)下形成的磨痕中存在复杂氧化物,其结晶构造与Al2O3和Cr2O3相似.随着法向载荷不断增大(10~200 N),该合金摩擦界面的晶粒更加细化,摩擦界面的原子排列更加趋向沿(111)晶面,其主要磨损机制由氧化磨损过渡到疲劳磨损,最终转变为黏着磨损.由于细晶强化作用,经抛丸处理后该AlCoCrFeNi高熵合金表面显微硬度达403 HV,相比抛丸前提高近1倍.抛丸处理形成的表面强化层有利于降低合金的磨损,其厚度约为25μm.随着...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号