首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马桂秋 《高分子科学》2015,33(11):1538-1549
The compatibility between isotactic polypropylene(i PP) and ethylene-propylene-diene terpolymer(EPDM) in the blends was studied. SAXS analysis indicates that i PP and EPDM phases in the binary blend are incompatible. Isothermal crystallization behaviors of i PP in phase-separated i PP/EPDM were studied by in situ POM equipped with a Linkam shear hot stage. It was found that typical spherulites of i PP were formed both in neat i PP and in i PP/EPDM blends. The radial growth rate(d R/dt) of spherulites of i PP in the blend was not influenced by EPDM phases. Further investigations on isothermal crystallization of i PP in i PP/EPDM after shear with a fixed shear time showed that the crystallization rate of i PP in the blends increased with increasing shear rates, whereas, the crystallization rate was much lower than that of neat i PP. WAXD results showed that ?-crystal i PP was formed in neat i PP as well as in i PP/EPDM blends after shearing and the percentage of ?-crystal bore a relationship to the applied shear rate. The presence of EPDM resulted in lower percentage of ?-crystal in the blends than that in neat i PP under the same constant shear conditions. SAXS experiments revealed that shear flow could induce formation of oriented lamellae in i PP and i PP in the blends, and the presence of EPDM led to a reduced fraction of oriented lamellae.  相似文献   

2.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

3.
The in situ microfibrillar blend of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) was fabricated through a slit die extrusion, hot stretch, and quenching process. The morphological observation indicates that while the unstretched blend appears to be a common incompatible morphology, the hot stretched blends present PET in situ fibers whose characteristics, such as diameter and aspect ratio, are dependent on the hot stretching ratio (HSR). When the HSR is low, the elongated dispersed phase particles are not uniform at all. As the HSR is increased to 16.1, well‐defined PET microfibers were generated in situ, whose diameter is rather uniform and is around 0.6 ~ 0.9 μm. The presence of the PET phase shows significant nucleation ability for crystallization of iPP. Higher HSR corresponds to faster crystallization of the iPP matrix, while as HSR is high up to a certain level, its variation has little influence on the onset and maximum crystallization temperatures of the iPP matrix during cooling from melt. Optical microscopy observation reveals that transcrystalline layers form in the microfibrillar blend, in which the PET microfibers play as the center row nuclei. In the as‐stretched microfibrillar blends, small‐angle X‐ray scattering measurements show that matrix iPP lamellar crystals have the same orientation as PET lamella. The long period of lamellar crystals of iPP is not affected by the presence of PET micofibers. Wide‐angle X‐ray scattering reveals that the β phase of iPP is obtained in the as‐stretched blends, whose concentration increases with the increase of the HSR. This suggests that finer PET microfibers can promote the occurrence of the β phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4095–4106, 2004  相似文献   

4.
In situ microfibrillar reinforced blends based on blends of isotactic polypropylene (iPP) and poly(ethylene terephthalate) (PET) were successfully prepared by a “slit extrusion-hot stretching-quenching” process. Four types of iPP with different apparent viscosity were utilized to investigate the effect of viscosity ratio on the morphology and mechanical properties of PET/iPP microfibrillar blend. The morphological observation shows that the viscosity ratio is closely associated to the size of dispersed phase droplets in the original blends, and accordingly greatly affects the microfibrillation of PET. Lower viscosity ratio is favorable to formation of smaller and more uniform dispersed phase particles, thus leading to finer microfibrils with narrower diameter distribution. Addition of a compatibilizer, poly propylene-grafted-glycidyl methacrylate (PP-g-GMA), can increase the viscosity ratio and decrease the interfacial tension between PET and iPP, which tends to decrease the size of PET phase in the unstretched blends. After stretched, the aspect ratio of PET microfibrils in the compatibilized blends is considerably reduced compared to the uncompatibilized ones. The lower viscosity ratio brought out higher mechanical properties of the microfibrillar blends. Compared to the uncompatibilized microfibrillar blends, the tensile, flexural strength and impact toughness of the compatibilized ones are all improved.  相似文献   

5.
Immiscible ternary blends of PET/EVA/PP (PET as the matrix and (PP/EVA) composition ratio = 1/1) were prepared by melt mixing. Scanning electron microscope results showed core‐shell type morphology for this ternary blend. Binary blends of PET/PP and PET/EVA were also prepared as control samples. Two grades of EVA with various viscosities, one higher and the other one lower than that of PP, were used to investigate the effect of components' viscosity on the droplet size of disperse phase. The effect of interfacial tension, elasticity, and viscosity on the disperse phase size of both binary and ternary blends was investigated. Variation of tensile modulus of both binary and ternary blends with dispersed phase content was also studied. Experimental results obtained for modulus of PET/EVA binary blends, showed no significant deviations from Takayanagi model, where considerable deviations were observed for PET/PP binary blends. Here, this model that has been originally proposed for binary blends was improved to become applicable for the prediction of the tensile modulus of ternary blends. The new modified model showed good agreement with the experimental data obtained in this study. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 251–259, 2010  相似文献   

6.
通过挤出和注射成型制备了滑石粉(Talc)填充的尼龙6/聚丙烯/马来酸酐接枝聚丙烯(PA6/PP/MAPP)合金, 研究了Talc和混炼顺序(一步法和PA6母料法)对合金相形态和力学性能的影响. 场发射扫描电镜(FESEM)分析结果表明, 添加Talc后注射样条中心部分的PP相由球状转变为沿流动方向取向的有分支的条状结构, 且用PA6母料法制样比用一步法制样的相形态更为精细. 溶解PA6相后对PP相进行热重分析(TGA), 确定了Talc在PA6相和PP相中的分布比例, Talc选择性分布于PA6相中. PA6母料法中Talc的分散好于一步法. 研究了材料的拉伸、 弯曲、 冲击、 热变形温度和动态力学性能, Talc的添加能够明显提高材料的刚性, 且母料法样品的性能优于一步法样品.  相似文献   

7.
Uncompatibilized and compatibilized (polypropylene‐grafted maleic anhydride (PP‐g‐MA) as compatibilizer) PET (polyethylene terephthalate)/PP (polypropylene)/TiO2 drawn strands were prepared by extrusion of the blends and cold drawing of the extrudates. In the uncompatibilized drawn strand, the generated PET microfibrils show large aspect ratio and wide distribution in diameter; whereas in the compatibilized drawn strand numbers of short needle‐like PET formations appear and demonstrate uniform diameter distribution. Derived from PET droplets, the microfibril morphology is greatly influenced by the size of PET droplets in the extrudates: small droplet deforms into needle‐like shape and large one becomes microfibril. In the compatibilized PET/PP/TiO2 extrudate, the size of PET droplet is much smaller than that in the uncompatibilized one. The reduction of droplet size is attributed to the low viscosity ratio between dispersed phase and matrix, which facilitates the break up of the dispersed PET droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 555–562, 2009  相似文献   

8.
The physical behavior of isotropic and oriented samples of an isotactic polypropylene (iPP)/ethylene–propylene–copolymer (EPM) reactor blend was studied by performance of dynamic mechanical measurements over a wide temperature range (DMTA). The influence of thermal history and drawing procedure was examined. The results showed that with increasing draw ratio the uniaxial elastic modulus of the material was considerably enhanced, whereas the intensity and strength of the amorphous relaxations of both components were reduced. At a certain draw ratio, the glass transtions of iPP and EPM phenomenologically merged and appeared as a single relaxation. The crystalline relaxation of iPP emerged with increased draw ratio at higher temperatures and was better seperated and easier to detect. The effects observed were attributed to the orientation of the crystallites in a fibrillar structure and to the restricted molecular mobility in amorphous regions. Measurements by differential scanning calorimetry (DSC) and x-ray diffraction of several drawn samples were performed to determine the effects of drawing on the melting behavior and the crystal orientation in the semicrystalline polymer. For comparison, some results of analogous studies on neat isotactic PP are presented and discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1439–1448, 1997  相似文献   

9.

The oriented and thermal crystallization of amorphous poly(ethylene terephthalate) (PET) films was investigated in terms of the morphological aspects. When the amorphous PET films were stretched up to the desired draw ratios in a hot water bath at 62, 72, and 80 °C, the birefringence of the specimens increased with increasing draw ratio (λ). This tendency becomes most significant when the specimen was drawn in the bath at 62 °C. The storage modulus of the specimen drawn at 62 °C was higher than those of the specimens drawn at 72 and 80 °C. The exothermic peak in the DSC curves was observed clearly for the specimen drawn up to λ=4 in the hot water bath at 80 °C, while the peak did not appear for the specimen drawn up to λ=4 at 62 °C. Under an Hv polarization condition, light scattering patterns from the specimens drawn in the hot water bath showed four lobes at small azimuthal angles and four sharp streaks at large azimuthal angles. Such a profile was independent of the drawing temperatures from 62 to 80 °C. Based on the observed Hv patterns, a model was proposed by assuming the existence of a row-nucleated sheaf-like structure whose rows were preferentially oriented at a particular angle with respect to the stretching direction. The patterns calculated by using the above model were rather close to the patterns observed. This agreement implies that row-nucleated sheaf-like texture arises with lamellar overgrowth.

  相似文献   

10.
The elastic behaviour of poly(ethylene terephthalate) (PET) and nylon 6 (PA6), their blends (1:1 by weight) and microfibrillar-reinforced composites of the previously mentioned homopolymers has been investigated by means of load-displacement analysis from indentation experiments. The dependence of the elastic modulus of the homopolymers upon the degree of crystallinity and the crystal size, as derived from indentation experiments, is discussed. A linear correlation between the elastic modulus anisotropy and the microindentation hardness anisotropy values is also found to apply for the oriented materials. The results reveal that the indentation modulus values of the PET/PA6 blends follow the parallel additivity model of the individual components. The use of the additivity law is also shown to provide a value, otherwise not accessible from direct measurements, of the modulus of the microfibrils within the microfibrillar-reinforced composites.  相似文献   

11.
Crystallization behavior of polypropylene/polycarbonate blends   总被引:2,自引:0,他引:2  
Crystallization behavior and morphology of polypropylene (PP)/polycarbonate (PC) blends have been studied by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In the study of non-isothermal crystallization of the blends, the phenomenon of multiple crystallization peaks of PP/PC blends was related to the blend morphology in which PP was the dispersed phase as small droplets in the PC matrix. The phenomenon of a single crystallization peak of the PP/PC blends was related to the blend morphology in which PP was a continuous phase; in that case the crystallization peak temperatures of the blends were higher than that of the PP. The isothermal crystallization kinetics of the PP and PP/PC (80/20) blend were described by the Avrami equation. The results showed that the Avrami exponent of the PP/PC (80/20) blend was higher than that of the PP, and the crystallization rate of the PP/PC (80/20) blend was faster than that of the PP. The crystallization rate of the PP and PP/PC (80/20) blend were calculated according to the Hoffmann theory. Both the PP and PP/PC (80/20) blend had maximum crystallization rates. The temperature at the maximum crystallization rate for the PP/PC (80/20) blend was higher than that of the PP.  相似文献   

12.
李忠明 《高分子科学》2011,29(5):540-551
One-step reaction compatibilized microfibrillar reinforced iPP/PET blends(CMRB) were successfully prepared through a "slit extrusion-hot stretching-quenching" process.Crystallization behavior and morphology of CMRB were systematically investigated.Scanning electronic microscopy(SEM) observations showed blurry interface of compatibilized common blend(CCB).The crystallization behavior of neat iPP,CCB,microfibrillar reinforced iPP/PET blend(MRB) and CMRB was investigated by differential scanning calorimetry(DSC) and polarized optical microscopy(POM).The increase of crystallization temperature and crystallization rate during nonisothermal crystallization process indicated both PET particles and microfibrils could serve as nucleating agents and PET microfibrils exhibited higher heterogeneous nucleation ability,which were also vividly revealed by results of POM.Compared with MRB sample,CMRB sample has lower crystallization temperature due to existence of PET microfibrils with smaller aspect ratio and wider distribution.In addition, since in situ compatibilizer tends to stay in the interphase,it could also hinder the diffusion of iPP molecules to the surface of PET phase,leading to decrease of crystallization rate.Two-dimensional wide-angle X-ray diffraction(2D-WAXD) was preformed to characterize the crystalline structure of the samples by injection molding,and it was found that well-developed PET microfibrils contained in MRB sample promoted formation ofβ-phase of iPP.  相似文献   

13.
Novel high-strength, micro-fibrillated cellulose (MFC)-reinforced polypropylene (PP) composites were prepared using maleic anhydride polypropylene (MAPP) and a cationic polymer having a primary amino group (CPPA) as coupling agents. Un-dried kraft pulp was micro-fibrillated into nano- to submicron-wide fibrils by kneading with powdered PP and the coupling agents via a twin-screw extruder. The composites were prepared by injection molding. The MFC-reinforced PP composites containing both coupling agents MAPP and CPPA (combination system) showed extremely high mechanical strength compared with the MFC-reinforced composite containing only MAPP. The tensile strength of a 30 wt% MFC-PP composite containing the combination system was 27 % higher than that of the composite containing only MAPP, and more than 60 % higher than that of neat PP. In addition, the heat distortion temperature, under a 1.82-MPa flexural load, of the composite with the combination system was 17 °C higher than that of the composite with MAPP only, and 34 °C higher than that of neat PP. The anisotropy of the modulus and strength in the injection-molded MFC composites was lower than that of glass fiber-reinforced PP.  相似文献   

14.
Polypropylene (PP) blends with acrylonitrile-butadiene-styrene (ABS) were prepared using the styrene-ethylene-butylene-styrene copolymer (SEBS) as a compatibilizing agent. The blends were prepared in a co-rotational twin-screw extruder and injection molded. Torque rheometry, Izod impact strength, tensile strength, heat deflection temperature (HDT), differential scanning calorimetry, thermogravimetry, and scanning electron microscopy properties were investigated. The results showed that there was an increase in the torque of PA6/ABS blends with SEBS addition. The PP/ABS/SEBS (60/25/15%) blend showed significant improvement in impact strength, elongation at break, thermal stability, and HDT compared with neat PP. The elastic modulus and tensile strength have not been significantly reduced. The degree of crystallinity and the crystalline melting temperature increased, indicating a nucleating effect of ABS. The PP/ABS blends compatibilized with 12.5% and 15% SEBS presented morphology with well-distributed fine ABS particles with good interfacial adhesion. As a result, thermal stability has been improved over pure PP and the mechanical properties have been increased, especially impact strength. In general, the addition of the SEBS copolymer as the PP/ABS blend compatibilizer has the advantage of refining the blend's morphology, increasing its toughness and thermal stability, without jeopardizing other PP properties.  相似文献   

15.
Thermal stability of ester-thermoplastic polyurethane (TPU)/polypropylene (PP) and ether-TPU/PP blends was evaluated by thermogravimetric studies. Thermal studies were made as a function of blend ratio. Effects of compatibilization using MA-g-PP and nanoclay addition on thermal stability were evaluated. Mass loss at 400 °C was found to decrease with increasing PP content were determined. Finally the compatibility and crystallization behavior of the blends were studied by differential scanning calorimetry. Compared to the ether-TPU blend nanocomposites, the ester-TPU blends showed better compatibility and thermal stability.  相似文献   

16.
Biodegradable poly(butylene succinate-co-lactate) (PBSL)/starch blends that contain various amounts of starch were prepared. In addition, luffa fiber (LF) and kenaf fiber (KF) were incorporated, individually, into PBSL/starch (70/30) blend to achieve biocomposites. The LF and KF were treated with NaOH(aq) prior to their addition to the blend. The Young's modulus and flexural modulus of PBSL increased with the addition of starch and increased further after the formation of the biocomposites. The highest Young's modulus increment, which was found in the KF-added system, was up to a 2.2-fold increase compared with neat PBSL. The tensile/flexural/impact strength of PBSL declined after the formation of the blends. With the further addition of LF/KF, the said properties leveled off. The blends exhibited higher complex viscosity and dynamic storage modulus in the melt state than the neat PBSL, and the values further increased in the biocomposites. The crystallization temperature of PBSL slightly decreased in the blends. By contrast, the biocomposites showed an increment in PBSL crystallization temperature, from 73.0 °C (PBSL) to 75.3 °C (KF-added composite), thereby confirming the surface nucleation effect of LF/KF. The blends showed a higher degree of water absorption than PBSL. The formation of biocomposites led to an even higher degree of water absorption. The current approach of including LF/KF in the PBSL/starch blend to enhance the rigidity and biodegradability was advantageous in expanding the applications of PBSL.  相似文献   

17.
Drawing behavior, flow drawing, and neck drawing, was studied for isotacticpolypropylene fibers in CO2 laser drawing system, and the fiber structure and the mechanical properties of drawn fibers were analyzed. For a certain laser power, flow drawing of polypropylene (PP) was possible up to draw ratio (DR) 19.5. Though the drawing stress was very low, the flow‐drawn PP fiber exhibited oriented crystal structure and improved mechanical properties. On the other hand, neck‐drawing was accomplished from DR 4 to 12, with significant increase in drawing stress that enhanced the development of fiber structure and mechanical properties. Unlike PET, the drawing stress depends not only on the DR, but on irradiated laser power also. The 10–12 times neck‐drawn fibers were highly fibrillated. The fibers having tensile strength 910 MPa, initial modulus 11 GPa, and dynamic modulus 14 GPa were obtained by single‐step laser drawing system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 398–408, 2006  相似文献   

18.
Highly oriented poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends were fabricated through solid hot stretching technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood‐contacting medical devices. It was found that the tensile strength and modulus of the blends can be improved dramatically by stretching. With the increase of draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak moved to high temperature, while the crystallinity increased, and the grain size of PLA decreased, indicating of the stress‐induced crystallization during drawing. The oriented blends exhibited structures with longitudinal striations which indicate the presence of micro‐fibers. TPU phase was finely and homogeneously dispersed in the PLA, and after drawing, TPU domains were elongated to ellipsoid. The introduction of TPU and orientation could enhance the blood compatibility of PLA by prolonging kinetic clotting time, and decreasing hemolysis ratio and platelet activation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
β-nucleated PP/PET blends were prepared using nano-CaCO3 supported β-nucleating agent (β-NA), PP as matrix, and PET as dispersion phase. The effects of preparation methods, PET content, and melting temperature on the non-isothermal crystallization behavior and the melting characteristic and polymorphic composition of PP in the blends were investigated by differential scanning calorimeter (DSC) and wide angle X-ray diffraction (WAXD). The results indicated that the PP crystallized predominantly in β-modification in the presence of β-NA. However, efficiency of β-NA for PP crystallization decreased with addition of PET and increasing PET contents. The β-nucleation of β-NA for PP crystallization in the blends was dependant on the preparation methods. The high β-nucleation and high β-PP content were obtained for PP/PET blend prepared at the temperature of 265 °C and added the β-NA into the blend at the temperature of 180 °C. However, the addition of β-PP or β-NA into blends at 265 °C decreased the β-nucleation, and no β-PP was formed because the β-NA mainly dispersed on the PET dispersion phase or at the interface between PP and PET.  相似文献   

20.
Controlling the extent of orientation is of great interest in polymer processing and is effected by the choice of polymer, the fabrication technique and the processing conditions. Understanding the crystalline transitions that form highly oriented fibrils is necessary for modeling the changes in physical properties, relative to degree of orientation. A model is proposed to describe the mechanical properties of drawn semicrystalline polymer films based on structural transitions. With a minimal amount of experimental data (requiring testing on only two drawn films samples), this model can be used to predict film properties. These properties include the critical and maximum draw ratios, the moduli at the maximum draw ratio, the moduli of the fiber, the modulus of the nonfibrous gel relative to draw ratio, the volume fraction of fibers, and the rate of fibrillation. Where high degrees of uniaxial orientation are required, the polymer is typically drawn in the solid state, meaning the polymer is stretched in a single direction at temperatures below the melting point. During this process, pre‐existing crystallites are transformed into fiber‐like structures with large aspect ratios. The presence of these rigid asymmetric structures significantly enhances the moduli and break strength of the polymer. This work presents a model that describes the formation of fiber‐like structures. The volume fraction of fibers is predicted to be linear in draw ratio. The derived relationship between volume fraction of fibers and draw ratio can then be used for the prediction of the various properties of the oriented film. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 607–618, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号